GP
Gerald Pao
Author with expertise in Oxytocin and Social Behavior Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,133
h-index:
20
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BRCA1 tumour suppression occurs via heterochromatin-mediated silencing

Quan Zhu et al.Sep 1, 2011
Mutations in the tumour suppressor gene BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of Brca1 in mice results in transcriptional de-repression of the tandemly repeated satellite DNA. Brca1 deficiency is accompanied by a reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions and ubiquitylates H2A in vivo. Ectopic expression of H2A fused to ubiquitin reverses the effects of BRCA1 loss, indicating that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA de-repression was also observed in mouse and human BRCA1-deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell-cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumour suppressor functions. The BRCA1 protein is a tumour suppressor associated with hereditary breast and ovarian cancer. Inder Verma and colleagues now describe a previously unknown function for BRCA1 that could be relevant to cancer causation. BRCA1 deficiency in mice is shown to impair the integrity of constitutive heterochromatin and to disrupt gene silencing at satellite repeat regions through the loss of ubiquitylation of histone H2A. Abnormal transcription of satellite repeats also occurs in human breast cancer samples deficient in BRCA1, a possible cause of genomic instability and thereby tumorigenesis.
0
Citation452
0
Save
0

Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

James Monaghan et al.Jan 13, 2009
Abstract Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR) and denervated (DL) forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa). Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST) contigs from the Ambystoma EST database more than doubled (3935 to 9411) the number of non-redundant human- A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.
0
Citation303
0
Save
101

The D614G mutation in the SARS-CoV2 Spike protein increases infectivity in an ACE2 receptor dependent manner

Junko Ogawa et al.Jul 22, 2020
Abstract The SARS-CoV2 coronavirus responsible for the current COVID19 pandemic has been reported to have a relatively low mutation rate. Nevertheless, a few prevalent variants have arisen that give the appearance of undergoing positive selection as they are becoming increasingly widespread over time. Most prominent among these is the D614G amino acid substitution in the SARS-CoV2 Spike protein, which mediates viral entry. The D614G substitution, however, is in linkage disequilibrium with the ORF1b P314L mutation where both mutations almost invariably co-occur, making functional inferences problematic. In addition, the possibility of repeated new introductions of the mutant strain does not allow one to distinguish between a founder effect and an intrinsic genetic property of the virus. Here, we synthesized and expressed the WT and D614G variant SARS-Cov2 Spike protein, and report that using a SARS-CoV2 Spike protein pseudotyped lentiviral vector we observe that the D614G variant Spike has >1/2 log 10 increased infectivity in human cells expressing the human ACE2 protein as the viral receptor. The increased binding/fusion activity of the D614G Spike protein was corroborated in a cell fusion assay using Spike and ACE2 proteins expressed in different cells. These results are consistent with the possibility that the Spike D614G mutant increases the infectivity of SARS-CoV2.
101
Citation63
0
Save
0

Identification of a novel breathing circuit that controls pain and anxiety

Shijia Liu et al.Jan 10, 2020
Alleviating pain with controlled breathing has been practiced throughout human history. Despite its wide use and long history, a neural circuit-based understanding of the pain-breathing interaction is largely lacking. Here we report a novel breathing circuit that regulates non-homeostatic breathing rhythm, as well as pain and anxiety. We identify that a cluster of neurons expressing the Oprm1 gene, which encodes the μ-opioid receptor (MOR) in the lateral subdivision of parabrachial nucleus (PBL Oprm1 ), directly regulates breathing rates in mice by conveying signals from the limbic areas to respiratory rhythm generating neurons in the medullary preBötzinger Complex (preBötC). In addition, we found that pain signals rapidly increase breathing rate by activating these neurons in both awake and anesthetized mice. Inactivating these neurons not only decreases the breathing rate, but it also substantially decreases anxiety-like behaviors and induces strong appetitive behaviors. Furthermore, PBL Oprm1 inactivation alleviates pain by attenuating the perception of the affective-motivational aspect of pain. These results suggest that PBL Oprm1 neurons play a critical role in the non-homeostatic regulation of breathing and in the regulation of pain and anxiety through breathing.