JS
Justin Swaney
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
876
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems

Evan Murray et al.Dec 1, 2015
+14
D
J
E
Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.
0

Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues

Taeyun Ku et al.Jul 25, 2016
+7
J
J
T
Protease-free expansion of organ-size tissue enables multiplexed super-resolution imaging of protein organization from the tissue-wide scale down through the nanoscale. The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.
0

Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping

Dae Yun et al.Jun 5, 2019
+16
J
Y
D
ABSTRACT Studying the function and dysfunction of complex biological systems necessitates comprehensive understanding of individual cells. Advancements in three-dimensional (3D) tissue processing and imaging modalities have enabled rapid visualization and phenotyping of cells in their spatial context. However, system-wide interrogation of individual cells within large intact tissue remains challenging, low throughput, and error-prone owing to the lack of robust labeling technologies. Here we introduce a rapid, versatile, and scalable method, eFLASH, that enables complete and uniform labeling of organ-scale tissue within one day. eFLASH dynamically modulates chemical transport and reaction kinetics to establish system-wide uniform labeling conditions throughout the day-long labeling period. This unique approach enables the same protocol to be compatible with a wide range of tissue types and probes, enabling combinatorial molecular phenotyping across different organs and species. We applied eFLASH to generate quantitative maps of various cell types in mouse brains. We also demonstrated multidimensional cell profiling in a marmoset brain block. We envision that eFLASH will spur holistic phenotyping of emerging animal models and disease models to help assess their functions and dysfunctions.
0
Citation65
0
Save
0

Scalable image processing techniques for quantitative analysis of volumetric biological images from light-sheet microscopy

Justin Swaney et al.Mar 16, 2019
+5
N
L
J
Here we describe an image processing pipeline for quantitative analysis of terabyte-scale volumetric images of SHIELD-processed mouse brains imaged with light-sheet microscopy. The pipeline utilizes open-source packages for destriping, stitching, and atlas alignment that are optimized for parallel processing. The destriping step removes stripe artifacts, corrects uneven illumination, and offers over 100x speed improvements compared to previously reported algorithms. The stitching module builds upon Terastitcher to create a single volumetric image quickly from individual image stacks with parallel processing enabled by default. The atlas alignment module provides an interactive web-based interface that automatically calculates an initial alignment to a reference image which can be manually refined. The atlas alignment module also provides summary statistics of fluorescence for each brain region as well as region segmentations for visualization. The expected runtime of our pipeline on a whole mouse brain hemisphere is 1-2 d depending on the available computational resources and the dataset size.