QZ
Qiangge Zhang
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
353
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Innovations present in the primate interneuron repertoire

Fenna Krienen et al.Sep 30, 2020
Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.
0
Citation267
0
Save
0

Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping

Dae Yun et al.Jun 5, 2019
ABSTRACT Studying the function and dysfunction of complex biological systems necessitates comprehensive understanding of individual cells. Advancements in three-dimensional (3D) tissue processing and imaging modalities have enabled rapid visualization and phenotyping of cells in their spatial context. However, system-wide interrogation of individual cells within large intact tissue remains challenging, low throughput, and error-prone owing to the lack of robust labeling technologies. Here we introduce a rapid, versatile, and scalable method, eFLASH, that enables complete and uniform labeling of organ-scale tissue within one day. eFLASH dynamically modulates chemical transport and reaction kinetics to establish system-wide uniform labeling conditions throughout the day-long labeling period. This unique approach enables the same protocol to be compatible with a wide range of tissue types and probes, enabling combinatorial molecular phenotyping across different organs and species. We applied eFLASH to generate quantitative maps of various cell types in mouse brains. We also demonstrated multidimensional cell profiling in a marmoset brain block. We envision that eFLASH will spur holistic phenotyping of emerging animal models and disease models to help assess their functions and dysfunctions.
0
Citation65
0
Save
1

Integrated platform for multi-scale molecular imaging and phenotyping of the human brain

Juhyuk Park et al.Mar 15, 2022
Abstract Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multi-scale details of individual cells in the human organ-scale system. To address this challenge, we developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain, by integrating novel chemical, mechanical, and computational tools. The platform includes three key tools: (i) a vibrating microtome for ultra-precision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), (ii) a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and (iii) a computational pipeline for reconstructing 3D connectivity across multiple brain slabs (UNSLICE). We demonstrated the transformative potential of our platform by analyzing human Alzheimer’s disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain. One-Sentence Summary We developed an integrated, scalable platform for highly multiplexed, multi-scale phenotyping and connectivity mapping in the same human brain tissue, which incorporated novel tissue processing, labeling, imaging, and computational technologies.
0

Viral manipulation of functionally distinct neurons from mice to humans

Douglas Vormstein-Schneider et al.Oct 18, 2019
Recent success in identifying gene regulatory elements in the context of recombinant adeno-associated virus vectors have enabled cell type-restricted gene expression. However, within the cerebral cortex these tools are presently limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple novel enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we identified enhancers that target the breadth of its expression, including two that are selective for parvalbumin and vasoactive intestinal peptide cortical interneurons. Demonstrating the functional utility of these elements, we found that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across species, from mice to humans. Finally, we demonstrate that our selection method is generalizable to other genes and characterize four additional PV-specific enhancers with exquisite specificity for distinct regions of the brain. Altogether, these viral tools can be used for cell-type specific circuit manipulation and hold considerable promise for use in therapeutic interventions.
0
Citation5
0
Save
77

A marmoset brain cell census reveals influence of developmental origin and functional class on neuronal identity

Fenna Krienen et al.Oct 19, 2022
Abstract The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. Transcriptionally-based cell type taxonomies reveal cell type composition and similarity relationships within and across brain structures. We sampled over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and used single-nucleus RNA sequencing to examine global gene expression patterns of cell types within and across brain structures. Our results indicate that there is generally a high degree of transcriptional similarity between GABAergic and glutamatergic neurons found in the same brain structure, and there are generally few shared molecular features between neurons that utilize the same neurotransmitter but reside in different brain structures. We also show that in many cases the transcriptional identities of cells are intrinsically retained from their birthplaces, even when they migrate beyond their cephalic compartments. Thus, the adult transcriptomic identity of most neuronal types appears to be shaped much more by their developmental identity than by their primary neurotransmitter signaling repertoire. Using quantitative mapping of single molecule FISH (smFISH) for markers for GABAergic interneurons, we found that the similar types (e.g. PVALB + interneurons) have distinct biodistributions in the striatum and neocortex. Interneuron types follow medio-lateral gradients in striatum but form complex distributions across the neocortex that are not described by simple gradients. Lateral prefrontal areas in marmoset are distinguished by high relative proportions of VIP + neurons. We further used cell-type-specific enhancer driven AAV-GFP to visualize the morphology of molecularly-resolved interneuron classes in neocortex and striatum, including the previously discovered novel primate-specific TAC3+ striatal interneurons. Our comprehensive analyses highlight how lineage and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types. One-Sentence Summary Adult primate neurons are imprinted by their region of origin, more so than by their functional identity.
77
Citation3
0
Save
0

Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset

Lin Zhang et al.Dec 10, 2023
Abstract In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset–a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.
0
Citation2
0
Save
17

Mitigating autocorrelation during spatially resolved transcriptomics data analysis

Kamal Maher et al.Jul 2, 2023
Abstract Several computational methods have recently been developed for characterizing molecular tissue regions in spatially resolved transcriptomics (SRT) data. However, each method fundamentally relies on spatially smoothing transcriptomic features across neighboring cells. Here, we demonstrate that smoothing increases autocorrelation between neighboring cells, causing latent space to encode physical adjacency rather than spatial transcriptomic patterns. We find that randomly sub-sampling neighbors before smoothing mitigates autocorrelation, improving the performance of existing methods and further enabling a simpler, more efficient approach that we call sp atial in tegration (SPIN). SPIN leverages the conventional single-cell toolkit, yielding spatial analogies to each tool: clustering identifies molecular tissue regions; differentially expressed gene analysis calculates region marker genes; trajectory inference reveals continuous, molecularly defined ana tomical axes; and integration allows joint analysis across multiple SRT datasets, regardless of tissue morphology, spatial resolution, or experimental technology. We apply SPIN to SRT datasets from mouse and marmoset brains to calculate shared and species-specific region marker genes as well as a molecularly defined neocortical depth axis along which several genes and cell types differ across species.
17
Citation2
0
Save
1

Non-synaptic alterations in striatal excitability and cholinergic modulation in a SAPAP3 mouse model of compulsive motor behavior

Jeffrey Malgady et al.Feb 8, 2022
Summary Deletion of the OCD-associated gene SAP90/PSD-95-associated protein 3 ( Sapap3 ), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here we show that SAPAP3 deletion causes non-synaptic and pathwayspecific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.
1
Citation1
0
Save
1

Comparative single cell epigenomic analysis of gene regulatory programs in the rodent and primate neocortex

Nathan Zemke et al.Apr 8, 2023
Sequence divergence of cis- regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome, and chromosomal conformation profiles from a total of over 180,000 cells. For each modality, we determined species-specific, divergent, and conserved gene expression and epigenetic features at multiple levels. We find that cell type-specific gene expression evolves more rapidly than broadly expressed genes and that epigenetic status at distal candidate cis -regulatory elements (cCREs) evolves faster than promoters. Strikingly, transposable elements (TEs) contribute to nearly 80% of the human-specific cCREs in cortical cells. Through machine learning, we develop sequence-based predictors of cCREs in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Lastly, we show that epigenetic conservation combined with sequence similarity helps uncover functional cis -regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.
Load More