CW
Christopher Whelan
Author with expertise in Genomic Rearrangements and Copy Number Variations
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
1,808
h-index:
14
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A structural variation reference for medical and population genetics

Ryan Collins et al.May 27, 2020
Structural variants (SVs) rearrange large segments of DNA1 and can have profound consequences in evolution and human disease2,3. As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)4 have become integral in the interpretation of single-nucleotide variants (SNVs)5. However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage6. We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings7. This SV resource is freely distributed via the gnomAD browser8 and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
0
Citation722
0
Save
0

Gibbon genome and the fast karyotype evolution of small apes

Lucia Carbone et al.Sep 9, 2014
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat. The genome of the gibbon, a tree-dwelling ape from Asia positioned between Old World monkeys and the great apes, is presented, providing insights into the evolutionary history of gibbon species and their accelerated karyotypes, as well as evidence for selection of genes such as those for forelimb development and connective tissue that may be important for locomotion through trees. The many species of gibbons are small, tree-living apes from Southeast Asia, most of them listed as 'endangered' or 'critically endangered' on the IUCN list. In their presentation of the genome of the northern white-cheeked gibbon (Nomascus leucogenys) , Lucia Carbone and colleagues provide intriguing insights into the biology and evolutionary history of a group that straddles the divide between Old World monkeys and the great apes. The authors investigate how a novel gibbon-specific retrotransposon might be the source of gibbons' genome plasticity. Rapid karyotype evolution combined with multiple episodes of climate and environmental change might explain the almost instantaneous divergence of the four gibbon genera. Positive selection on genes involved in forelimb development and connective tissue might have been related to gibbons' unique mode of locomotion in the tropical canopy.
0
Citation347
0
Save
40

Systematic evaluation of genome sequencing for the assessment of fetal structural anomalies

Chelsea Lowther et al.Aug 13, 2020
ABSTRACT Current clinical guidelines recommend three genetic tests for the assessment of fetal structural anomalies: karyotype to detect microscopically-visible balanced and unbalanced chromosomal rearrangements, chromosomal microarray (CMA) to detect sub-microscopic copy number variants (CNVs), and exome sequencing (ES) to identify individual nucleotide changes in coding sequence. Advances in genome sequencing (GS) analysis suggest that it is poised to displace the sequential application of all three conventional tests to become a single diagnostic approach for the assessment of fetal structural anomalies. However, systematic benchmarking is required to assure that GS can capture the full mutational spectrum associated with fetal structural anomalies and to accurately quantify the added diagnostic yield of GS. We applied a novel GS analytic framework that included the discovery, filtration, and interpretation of nine classes of genomic variation to 7,195 individuals. We assessed the sensitivity of GS to detect diagnostic variants (pathogenic or likely pathogenic) from three standard-of-care tests using 1,612 autism spectrum disorder quartet families (ASD; n=6,448) with matched GS, ES, and CMA data, and validated these findings in 46 fetuses with a clinically reportable variant originally identified by karyotype, CMA, or ES. We then assessed the added diagnostic yield of GS in 249 trios (n=747) comprising a fetus with a structural anomaly detected by ultrasound and two unaffected parents that were pre-screened with a combination of all three standard-of-care tests. Across both cohorts, our GS analytic framework identified 98.2% of all diagnostic variants detected by standard-of-care tests, including 100% of those originally detected by CMA (n=88) and ES (n=61), as well as 78.6% (n=11/14) of the chromosomal rearrangements identified by karyotype. The diagnostic yield from GS was 7.8% across all 1,612 ASD probands, almost two-fold more than CMA (4.4%) and three-fold more than ES (3.0%). We also demonstrated that the yield of ES can approach that of GS when CNVs are captured with high sensitivity from exome data (7.4% vs. 7.8%, respectively). In 249 pre-screened fetuses with structural anomalies, GS provided an additional diagnostic yield of 0.4% beyond the combination of all three tests (karyotype, CMA, and ES). Applying our benchmarking results to existing data indicates that GS can achieve an overall diagnostic yield of 46.1% in unselected fetuses with fetal structural anomalies, providing an estimated 17.2% increase in diagnostic yield over karyotype, 14.1% over CMA, and 36.1% over ES when sequence variants are assessed, and 4.1% when CNVs are also identified from exome data. In this study we demonstrate that GS is sensitive to the detection of almost all pathogenic variation captured by karyotype, CMA, and ES, provides a superior diagnostic yield than any individual test by a wide margin, and contributes a modest increase in diagnostic yield beyond the combination of all three tests. We also outline several strategies to aid the interpretation of GS variants that are cryptic to conventional technologies, which we anticipate will be increasingly encountered as comprehensive variant identification from GS is performed. Taken together, these data suggest GS warrants consideration as a first-tier diagnostic approach for fetal structural anomalies.
40
Citation13
0
Save
0

Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses

Nolan Kamitaki et al.Sep 9, 2019
Many common illnesses differentially affect men and women for unknown reasons. The autoimmune diseases lupus and Sjögren’s syndrome affect nine times more women than men 1,2 , whereas schizophrenia affects men more frequently and severely 3–5 . All three illnesses have their strongest common-genetic associations in the Major Histocompatibility Complex (MHC) locus, an association that in lupus and Sjögren’s syndrome has long been thought to arise from HLA alleles 6–13 . Here we show that the complement component 4 ( C4 ) genes in the MHC locus, recently found to increase risk for schizophrenia 14 , generate 7-fold variation in risk for lupus (95% CI: 5.88-8.61; p < 10 −117 in total) and 16-fold variation in risk for Sjögren’s syndrome (95% CI: 8.59-30.89; p < 10 −23 in total), with C4A protecting more strongly than C4B in both illnesses. The same alleles that increase risk for schizophrenia, greatly reduced risk for lupus and Sjögren’s syndrome. In all three illnesses, C4 alleles acted more strongly in men than in women: common combinations of C4A and C4B generated 14-fold variation in risk for lupus and 31-fold variation in risk for Sjögren’s syndrome in men (vs. 6-fold and 15-fold among women respectively) and affected schizophrenia risk about twice as strongly in men as in women. At a protein level, both C4 and its effector (C3) were present at greater levels in men than women in cerebrospinal fluid ( p < 10 −5 for both C4 and C3) and plasma among adults ages 20-50 15–17 , corresponding to the ages of differential disease vulnerability. Sex differences in complement protein levels may help explain the larger effects of C4 alleles in men, women’s greater risk of SLE and Sjögren’s, and men’s greater vulnerability in schizophrenia. These results nominate the complement system as a source of sexual dimorphism in vulnerability to diverse illnesses.
0
Citation3
0
Save
0

An open resource of structural variation for medical and population genetics

Ryan Collins et al.Mar 14, 2019
Structural variants (SVs) rearrange large segments of the genome and can have profound consequences for evolution and human diseases. As national biobanks, disease association studies, and clinical genetic testing grow increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD) have become integral for interpreting genetic variation. To date, no large-scale reference maps of SVs exist from high-coverage sequencing comparable to those available for point mutations in protein-coding genes. Here, we constructed a reference atlas of SVs across 14,891 genomes from diverse global populations (54% non-European) as a component of gnomAD. We discovered a rich landscape of 433,371 distinct SVs, including 5,295 multi-breakpoint complex SVs across 11 mutational subclasses, and examples of localized chromosome shattering, as in chromothripsis. The average individual harbored 7,439 SVs, which accounted for 25-29% of all rare protein-truncating events per genome. We found strong correlations between constraint against damaging point mutations and rare SVs that both disrupt and duplicate protein-coding sequence, suggesting intolerance to reciprocal dosage alterations for a subset of tightly regulated genes. We also uncovered modest selection against noncoding SVs in cis -regulatory elements, although selection against protein-truncating SVs was stronger than any effect on noncoding SVs. Finally, we benchmarked carrier rates for medically relevant SVs, finding very large (≥1Mb) rare SVs in 3.8% of genomes (~1:26 individuals) and clinically reportable incidental SVs in 0.18% of genomes (~1:556 individuals). These data have been integrated directly into the gnomAD browser ( ) and will have broad utility for population genetics, disease association, and diagnostic screening.
Load More