CT
Cedric Tan
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(78% Open Access)
Cited by:
1,514
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Emergence of genomic diversity and recurrent mutations in SARS-CoV-2

Lucy Dorp et al.May 5, 2020
SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.
0
Citation837
0
Save
0

Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2

Leo Swadling et al.Nov 10, 2021
Abstract Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections 1–3 . Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4–11 ), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication–transcription complex (RTC) 12,13 , in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27 , a robust early innate signature of SARS-CoV-2 (ref. 14 ), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae .
0
Citation328
0
Save
1

No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2

Lucy Dorp et al.Nov 25, 2020
Abstract COVID-19 is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised animal reservoir. Due to this recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that SARS-CoV-2 may be evolving towards higher transmissibility. The most plausible mutations under putative natural selection are those which have emerged repeatedly and independently (homoplasies). Here, we formally test whether any homoplasies observed in SARS-CoV-2 to date are significantly associated with increased viral transmission. To do so, we develop a phylogenetic index to quantify the relative number of descendants in sister clades with and without a specific allele. We apply this index to a curated set of recurrent mutations identified within a dataset of 46,723 SARS-CoV-2 genomes isolated from patients worldwide. We do not identify a single recurrent mutation in this set convincingly associated with increased viral transmission. Instead, recurrent mutations currently in circulation appear to be evolutionary neutral and primarily induced by the human immune system via RNA editing, rather than being signatures of adaptation. At this stage we find no evidence for significantly more transmissible lineages of SARS-CoV-2 due to recurrent mutations.
1
Citation306
0
Save
434

A phylogeny-based metric for estimating changes in transmissibility from recurrent mutations in SARS-CoV-2

Damien Richard et al.May 7, 2021
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally to cause the COVID-19 pandemic. Despite the constant accumulation of genetic variation in the SARS-CoV-2 population, there was little evidence for the emergence of significantly more transmissible lineages in the first half of 2020. Starting around November 2020, several more contagious and possibly more virulent ‘Variants of Concern’ (VoCs) were reported in various regions of the world. These VoCs share some mutations and deletions that haven arisen recurrently in distinct genetic backgrounds. Here, we build on our previous work modelling the association of mutations to SARS-CoV-2 transmissibility and characterise the contribution of individual recurrent mutations and deletions to estimated viral transmissibility. We then assess how patterns of estimated transmissibility in all SARS-CoV-2 clades have varied over the course of the COVID-19 pandemic by summing transmissibility estimates for all individual mutations carried by any sequenced genome analysed. Such an approach recovers the Delta variant (21A) as the most transmissible clade currently in circulation, followed by the Alpha variant (20I). By assessing transmissibility over the time of sampling, we observe a tendency for estimated transmissibility within clades to slightly decrease over time in most clades. Although subtle, this pattern is consistent with the expectation of a decay in transmissibility in mainly non-recombining lineages caused by the accumulation of weakly deleterious mutations. SARS-CoV-2 remains a highly transmissible pathogen, though such a trend could conceivably play a role in the turnover of different global viral clades observed over the pandemic so far. Caveats This work is not about the severity of disease. We do not analyse the severity of disease. We do not present any evidence that SARS-CoV-2 has decreased in severity. Lineage replacement dynamics are affected by many factors. The trend we recover for a decrease in inferred transmissibility of a clade over time is a small effect. We caution against over-interpretation. This result would not affect the management of the SARS-CoV-2 pandemic: for example, we make no claims about any impact on the efficacy of particular non-pharmaceutical interventions (NPIs). Our phylogeny-based method to infer changes in estimated transmissibility due to recurrent mutations and deletions makes a number of simplifying assumptions. These may not all be valid. The consistent trend for the slight decrease we report might be due to an as-yet-unidentified systematic bias.
434
Citation23
0
Save
494

Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses

Cedric Tan et al.Dec 9, 2020
Abstract Several studies have reported the presence of pre-existing humoral or cell-mediated cross-reactivity to SARS-CoV-2 peptides in healthy individuals unexposed to SARS-CoV-2. In particular, the current literature suggests that this pre-existing cross-reactivity could, in part, derive from prior exposure to ‘common cold’ endemic human coronaviruses (HCoVs). In this study, we characterised the sequence homology of SARS-CoV-2-derived T-cell epitopes reported in the literature across the entire diversity of the Coronaviridae family. Slightly over half (54.8%) of the tested epitopes did not have noticeable homology to any of the human endemic coronaviruses (HKU1, OC43, NL63 and 229E), suggesting prior exposure to these viruses cannot explain the full cross-reactive profiles observed in healthy unexposed individuals. Further, we find that the proportion of cross-reactive SARS-CoV-2 epitopes with noticeable sequence homology is extremely well predicted by the phylogenetic distance to SARS-CoV-2 ( R 2 = 96.6%). None of the coronaviruses sequenced to date showed a statistically significant excess of T-cell epitope homology relative to the proportion of expected random matches given the sequence similarity of their core genome to SARS-CoV-2. Taken together, our results suggest that the repertoire of cross-reactive epitopes reported in healthy adults cannot be primarily explained by prior exposure to any coronavirus known to date, or any related yet-uncharacterised coronavirus.
494
Citation8
0
Save
48

Detection of a historic reservoir of bedaquiline / clofazimine resistance associated variants inMycobacterium tuberculosis

Camus Nimmo et al.Oct 7, 2020
Abstract Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis ( Mtb ) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene ( Rv0678 ), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. We compiled a dataset of 3,682 Mtb genomes, including 150 carrying variants in mmpR5 that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5 , some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade of isolates where the RAV Ile67fs is estimated to have emerged prior to the antibiotic era, co-occurrence of mutations in mmpL5 are found to neutralise bedaquiline resistance. The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
48
Citation4
0
Save
208

No evidence for a common blood microbiome based on a population study of 9,770 healthy humans

Cedric Tan et al.Jul 30, 2022
Abstract Human blood is conventionally considered sterile. Recent studies have challenged this, suggesting the presence of a blood microbiome in healthy humans. We present the largest investigation to date of microbes in blood, based on shotgun sequencing libraries from 9,770 healthy subjects. Leveraging the availability of data from multiple cohorts, we stringently filtered for laboratory contaminants to identify 117 microbial species detected in the blood of sampled individuals, some of which had signatures of DNA replication. These primarily comprise of commensals associated with human body sites such as the gut ( n =40), mouth ( n =32), and genitourinary tract ( n =18), which are species that are distinct from common pathogens detected in clinical blood cultures based on more than a decade of records from a tertiary hospital. Contrary to the expectations of a shared blood microbiome, no species were detected in 84% of individuals, while only a median of one microbial species per individual was detected in the remaining 16%. Futhermore, microbes of the same species were detected in <5% of individuals, no co-occurrence patterns similar to microbiomes in other body sites was observed, and no associations between host phenotypes (e.g. demographics and blood parameters) and microbial species could be established. Overall, these results do not support the hypothesis of a consistent core microbiome endogenous to human blood. Rather, our findings support the transient and sporadic translocation of commensal microbes, or their DNA, from other body sites into the bloodstream.
208
Citation2
0
Save
0

A Novel Method for the Capture-based Purification of Whole Viral Native RNA Genomes

Cedric Tan et al.Sep 6, 2018
ABSTRACT Current technologies for targeted characterization and manipulation of viral RNA primarily involve amplification or ultracentrifugation with isopycnic gradients of viral particles to decrease host RNA background. The former strategy is non-compatible for characterizing properties innate to RNA strands such as secondary structure, RNA-RNA interactions, and also for nanopore direct RNA sequencing involving the sequencing of native RNA strands. The latter strategy, ultracentrifugation, causes loss in genomic information due to its inability to retrieve unassembled viral RNA. To address this, we developed a novel application of current nucleic acid hybridization technologies for direct characterization of RNA. In particular, we modified a current enrichment protocol to capture whole viral native RNA genomes for downstream RNA assays to circumvent the abovementioned problems. This technique involves hybridization of biotinylated baits at 500 nucleotides (nt) intervals, stringent washes and release of free native RNA strands using DNase I treatment, with a turnaround time of about 6 h 15 min. RT-qPCR was used as the primary proof of concept that capture-based purification indeed removes host background. Subsequently, capture-based purification was applied to direct RNA sequencing as proof of concept that capture-based purification can be coupled with downstream RNA assays. We report that this protocol was able to successfully purify viral RNA by 561-791 fold. We also report that application of this protocol to direct RNA sequencing yielded a reduction in human host RNA background by 1580 fold, a 99.91% recovery of viral genome with at least 15x coverage, and a mean coverage across the genome of 120x. This report is, to the best of our knowledge, the first description of a capture-based purification method for assays that involve direct manipulation or characterisation of native RNA. This report also describes a successful application of capture-based purification as a direct RNA sequencing strategy that addresses certain limitations of current strategies in sequencing RNA viral genomes.
0
Citation1
0
Save
Load More