JP
Jasmine Portmann
Author with expertise in Coronavirus Disease 2019 Research
Spiez Laboratory, University of Bern, Federal Department of Home Affairs
+ 8 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
10
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets

Annika Kratzel et al.Oct 24, 2023
+9
Y
J
A
Summary Over the past 20 years, the emergence of three highly pathogenic coronaviruses (CoV) – SARS-CoV, MERS-CoV, and most recently SARS-CoV-2 – has shown that CoVs pose a serious risk to human health and highlighted the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycle. Here, we conducted two independent genome-wide CRISPR/Cas9 knockout screens to identify pan-CoV host factors required for the replication of both endemic and emerging CoVs, including the novel CoV SARS-CoV-2. Strikingly, we found that several autophagy-related genes, including the immunophilin FKBP8, TMEM41B, and MINAR1, were common host factors required for CoV replication. Importantly, inhibition of the immunophilin family with the compounds Tacrolimus, Cyclosporin A, and the non-immunosuppressive derivative Alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures that resemble the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrate that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.
1
Paper
Citation6
0
Save
0

Susceptibility of well-differentiated airway epithelial cell cultures from domestic and wildlife animals to SARS-CoV-2

Mitra Gultom et al.Dec 1, 2020
+24
L
M
M
Abstract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally, and the number of cases continues to rise all over the world. Besides humans, the zoonotic origin, as well as intermediate and potential spillback host reservoirs of SARS-CoV-2 are unknown. To circumvent ethical and experimental constraints, and more importantly, to reduce and refine animal experimentation, we employed our airway epithelial cell (AEC) culture repository composed of various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. In this study, we inoculated well-differentiated animal AEC cultures of monkey, cat, ferret, dog, rabbit, pig, cattle, goat, llama, camel, and two neotropical bat species with SARS-CoV-2. We observed that SARS-CoV-2 only replicated efficiently in monkey and cat AEC culture models. Whole-genome sequencing of progeny virus revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat epithelial airway cells. Our findings, together with the previously reported human-to-animal spillover events warrants close surveillance to understand the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.
0
Paper
Citation4
0
Save
0

Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform

Tran Thao et al.May 6, 2020
+23
N
F
T
Reverse genetics has been an indispensable tool revolutionising our insights into viral pathogenesis and vaccine development. Large RNA virus genomes, such as from Coronaviruses, are cumbersome to clone and to manipulate in E. coli hosts due to size and occasional instability. Therefore, an alternative rapid and robust reverse genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform for the genetic reconstruction of diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Paramyxoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples, or synthetic DNA, and reassembled in one step in Saccharomyces cerevisiae using transformation associated recombination (TAR) cloning to maintain the genome as a yeast artificial chromosome (YAC). T7-RNA polymerase has been used to generate infectious RNA, which was then used to rescue viable virus. Based on this platform we have been able to engineer and resurrect chemically-synthetized clones of the recent epidemic SARS-CoV-2 in only a week after receipt of the synthetic DNA fragments. The technical advance we describe here allows to rapidly responding to emerging viruses as it enables the generation and functional characterization of evolving RNA virus variants - in real-time - during an outbreak.
0

Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis.

Jenna Kelly et al.May 7, 2020
+4
P
L
J
Respiratory viruses, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), target cells found in the human respiratory epithelium. These cells, which form a pseudostratified epithelial layer along the airways, constitute the first line of defence against respiratory pathogens and play a crucial role in the host antiviral response. However, despite their key role in host defence, it remains unknown how distinct cell types in the respiratory epithelium respond to IAV infection and how these responses may contribute to IAV-induced pathogenesis and overall disease outcome. Here, we used single cell RNA-sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to a respiratory virus infection in its natural target cells - namely, the human respiratory epithelium.
0

Determining the replication kinetics and cellular tropism of the ruminant-associated Influenza D virus on primary human airway epithelial cells

Melle Holwerda et al.May 7, 2020
+3
I
L
M
Influenza viruses are notorious pathogens that frequently cross the species barrier with often severe consequences for both animal and human health. In 2011, a novel member of the Orthomyxoviridae family, Influenza D virus (IDV), was identified in the respiratory tract of diseased swine. Epidemiological surveys revealed that IDV is distributed worldwide among livestock and that IDV-directed antibodies are detected in humans with occupational exposure to livestock. To identify the transmission capability of IDV to humans, we determined the viral replication kinetics and cell tropism using an in vitro respiratory epithelium model of humans. The inoculation of IDV revealed efficient replication kinetics and apical progeny virus release at different body temperatures. Intriguingly, the replication characteristics of IDV revealed many similarities to the human-associated Influenza C virus, including the cell tropism preference for ciliated cells. Collectively, these results might indicate why IDV-directed antibodies are detected among humans with occupational exposure to livestock.
717

SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility

Bin Zhou et al.Oct 11, 2023
+32
D
T
B
Abstract During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic 1 . However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro , it provides a real competitive advantage in vivo , particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating.
1

Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus

Mitra Gultom et al.Oct 24, 2023
+10
J
A
M
Abstract In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus . Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo . In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium.
305

Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium

Philip V’kovski et al.Oct 11, 2023
+19
J
M
P
Abstract Since its emergence in December 2019, SARS-CoV-2 has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human respiratory tract have been shown to affect the replication kinetics of several viruses, as well as host immune response dynamics, we investigated the impact of temperatures during SARS-CoV-2 and SARS-CoV infection in the human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated more efficiently at temperatures encountered in the upper respiratory tract, and displayed higher sensitivity to type I and type III IFNs. Time-resolved transcriptome analysis highlighted a temperature-dependent and virus-specific induction of the IFN-mediated antiviral response. These data reflect clinical features of SARS-CoV-2 and SARS-CoV, as well as their associated transmission efficiencies, and provide crucial insight on pivotal virus - host interaction dynamics.
305
0
Save