JK
Jenna Kelly
Author with expertise in Coronavirus Disease 2019 Research
University of Bern, Federal Department of Home Affairs, Institute of Virology
+ 5 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
21
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Enhanced fitness of SARS-CoV-2 variant of concern B.1.1.7, but not B.1.351, in animal models

Lisa Ulrich et al.Oct 24, 2023
+34
A
N
L
Abstract Emerging variants of concern (VOCs) drive the SARS-CoV-2 pandemic. We assessed VOC B.1.1.7, now prevalent in several countries, and VOC B.1.351, representing the greatest threat to populations with immunity to the early SARS-CoV-2 progenitors. B.1.1.7 showed a clear fitness advantage over the progenitor variant (wt-S 614G ) in ferrets and two mouse models, where the substitutions in the spike glycoprotein were major drivers for fitness advantage. In the “superspreader” hamster model, B.1.1.7 and wt-S 614G had comparable fitness, whereas B.1.351 was outcompeted. The VOCs had similar replication kinetics as compared to wt-S 614G in human airway epithelial cultures. Our study highlights the importance of using multiple models for complete fitness characterization of VOCs and demonstrates adaptation of B.1.1.7 towards increased upper respiratory tract replication and enhanced transmission in vivo. Summary sentence B.1.1.7 VOC outcompetes progenitor SARS-CoV-2 in upper respiratory tract replication competition in vivo.
1
Paper
Citation9
0
Save
1

A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets

Annika Kratzel et al.Oct 24, 2023
+9
Y
J
A
Summary Over the past 20 years, the emergence of three highly pathogenic coronaviruses (CoV) – SARS-CoV, MERS-CoV, and most recently SARS-CoV-2 – has shown that CoVs pose a serious risk to human health and highlighted the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycle. Here, we conducted two independent genome-wide CRISPR/Cas9 knockout screens to identify pan-CoV host factors required for the replication of both endemic and emerging CoVs, including the novel CoV SARS-CoV-2. Strikingly, we found that several autophagy-related genes, including the immunophilin FKBP8, TMEM41B, and MINAR1, were common host factors required for CoV replication. Importantly, inhibition of the immunophilin family with the compounds Tacrolimus, Cyclosporin A, and the non-immunosuppressive derivative Alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures that resemble the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrate that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.
1
Paper
Citation6
0
Save
1

The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype

G. Barut et al.Oct 24, 2023
+41
A
N
G
Abstract Variant of concern (VOC) Omicron-BA1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and multiple animal models is urgently needed. Here, we characterized Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in naïve hamsters, ferrets and hACE2-expressing mice, and in immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In Syrian hamsters, Delta showed dominance over Omicron-BA.1 and in ferrets, Omicron-BA.1 infection was abortive. In mice expressing the authentic hACE2-receptor, Delta and a Delta spike clone also showed dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observed Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of both Delta and Omicron-BA.1 replication and pathogenicity. Finally, the Omicron-BA.1 spike clone was less well controlled by mRNA-vaccination in K18-hACE2-mice and became more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.
1
Paper
Citation5
0
Save
0

A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications

Jacob Schön et al.Sep 12, 2024
+35
B
G
J
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.
0
Paper
Citation1
0
Save
0

Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform

Tran Thao et al.May 6, 2020
+23
N
F
T
Reverse genetics has been an indispensable tool revolutionising our insights into viral pathogenesis and vaccine development. Large RNA virus genomes, such as from Coronaviruses, are cumbersome to clone and to manipulate in E. coli hosts due to size and occasional instability. Therefore, an alternative rapid and robust reverse genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform for the genetic reconstruction of diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Paramyxoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples, or synthetic DNA, and reassembled in one step in Saccharomyces cerevisiae using transformation associated recombination (TAR) cloning to maintain the genome as a yeast artificial chromosome (YAC). T7-RNA polymerase has been used to generate infectious RNA, which was then used to rescue viable virus. Based on this platform we have been able to engineer and resurrect chemically-synthetized clones of the recent epidemic SARS-CoV-2 in only a week after receipt of the synthetic DNA fragments. The technical advance we describe here allows to rapidly responding to emerging viruses as it enables the generation and functional characterization of evolving RNA virus variants - in real-time - during an outbreak.
0

Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis.

Jenna Kelly et al.May 7, 2020
+4
P
L
J
Respiratory viruses, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), target cells found in the human respiratory epithelium. These cells, which form a pseudostratified epithelial layer along the airways, constitute the first line of defence against respiratory pathogens and play a crucial role in the host antiviral response. However, despite their key role in host defence, it remains unknown how distinct cell types in the respiratory epithelium respond to IAV infection and how these responses may contribute to IAV-induced pathogenesis and overall disease outcome. Here, we used single cell RNA-sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to a respiratory virus infection in its natural target cells - namely, the human respiratory epithelium.
305

Disparate temperature-dependent virus – host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium

Philip V’kovski et al.Oct 11, 2023
+19
J
M
P
Abstract Since its emergence in December 2019, SARS-CoV-2 has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human respiratory tract have been shown to affect the replication kinetics of several viruses, as well as host immune response dynamics, we investigated the impact of temperatures during SARS-CoV-2 and SARS-CoV infection in the human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated more efficiently at temperatures encountered in the upper respiratory tract, and displayed higher sensitivity to type I and type III IFNs. Time-resolved transcriptome analysis highlighted a temperature-dependent and virus-specific induction of the IFN-mediated antiviral response. These data reflect clinical features of SARS-CoV-2 and SARS-CoV, as well as their associated transmission efficiencies, and provide crucial insight on pivotal virus - host interaction dynamics.
305
0
Save
717

SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility

Bin Zhou et al.Oct 11, 2023
+32
D
T
B
Abstract During the evolution of SARS-CoV-2 in humans a D614G substitution in the spike (S) protein emerged and became the predominant circulating variant (S-614G) of the COVID-19 pandemic 1 . However, whether the increasing prevalence of the S-614G variant represents a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains elusive. Here, we generated isogenic SARS-CoV-2 variants and demonstrate that the S-614G variant has (i) enhanced binding to human ACE2, (ii) increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a novel human ACE2 knock-in mouse model, and (iii) markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Collectively, our data show that while the S-614G substitution results in subtle increases in binding and replication in vitro , it provides a real competitive advantage in vivo , particularly during the transmission bottle neck, providing an explanation for the global predominance of S-614G variant among the SARS-CoV-2 viruses currently circulating.