XT
Xiaolong Tian
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
1,703
h-index:
20
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody

Xiaolong Tian et al.Jan 1, 2020
The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 11,900 laboratory-confirmed human infections, including 259 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor-binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. Here, we report for the first time that a SARS-CoV-specific human monoclonal antibody, CR3022, could bind potently with 2019-nCoV RBD (KD of 6.3 nM). The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. These results suggest that CR3022 may have the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g. m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, implying that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.
12

Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody

Xiaolong Tian et al.Jan 28, 2020
ABSTRACT The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 800 laboratory-confirmed human infections, including 25 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS-CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. Here, we report for the first time that a SARS-CoV-specific human monoclonal antibody, CR3022, could bind potently with 2019-nCoV RBD (KD of 6.3 nM). The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. Therefore, CR3022 has the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g., m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, indicating that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.
12
Citation47
0
Save
11

A potent SARS-CoV-2 antibody neutralizes Omicron variant by disassembling the spike trimer

Lei Sun et al.Mar 22, 2022
The continuous emergence of novel SARS-CoV-2 variants poses new challenges to the fight against the COVID-19 pandemic. The newly emerging Omicron strain caused serious immune escape and raised unprecedented concern all over the world. The development of antibody targeting conserved and universal epitope is urgently needed. A subset neutralizing antibody(nAbs) against COVID-19 from convalescent patients were isolated in our previous study. Here in this study, we investigated the accommodation of these nAbs to SARS-CoV-2 variants of concerns (VOCs), revealing that IgG 553-49 neutralizes pseudovirus of SARS-CoV-2 Omicron variant. In addition, we determined the cryo-EM structure of SARS-CoV-2 spike complexed with three antibodies targeting different epitopes, including 553-49, 553-15 and 553-60. Notably, 553-49 targets a novel conserved epitope and neutralizes virus by disassembling spike trimers. 553-15, an antibody that neutralizes all the other VOCs except omicron, cross-links two spike trimers to form trimer dimer, demonstrating that 553-15 neutralizes virus by steric hindrance and virion aggregation. These findings suggest the potential to develop 49 and other antibody targeting this highly conserved epitope as promising cocktail therapeutics reagent for COVID-19.
11
Citation2
0
Save
0

Central memory CD4+ T cells play a protective role against immune checkpoint inhibitor-associated myocarditis

Jiajun Yu et al.Jun 8, 2024
Abstract Aims The widespread use of immune checkpoint inhibitors (ICIs) has demonstrated significant survival benefits for cancer patients and also carries the risk of immune-related adverse events. ICI-associated myocarditis is a rare and serious adverse event with a high mortality rate. Here, we explored the mechanism underlying ICI-associated myocarditis. Methods and results Using the peripheral blood of patients with ICI therapy and of ICI-treated mice with transplanted tumours, we dissect the immune cell subsets and inflammatory factors associated with myocarditis. Compared to the control group, patients with myocarditis after ICI therapy showed an increase in NK cells and myeloid cells in the peripheral blood, while T cells significantly decreased. Among T cells, there was an imbalance of CD4/CD8 ratio in the peripheral blood of myocarditis patients, with a significant decrease in central memory CD4+ T (CD4+ TCM) cells. RNA sequencing revealed that CD4+ TCM cells in myocarditis patients were immunosuppressive cell subsets, which highly express the immunosuppressive factor IL-4I1. To elucidate the potential mechanism of the decrease in CD4+ TCM cells, protein array was performed and revealed that several inflammatory factors gradually increased with the severity of myocarditis in the myocarditis group, such as IL-1B/CXCL13/CXCL9, while the myocardial protective factor IL-15 decreased. Correlation analysis indicated a positive correlation between IL-15 and CD4+ TCM cells, with high expression of IL-15 receptor IL15RA. Furthermore, in vivo studies using an anti-PDL1 antibody in a mouse tumour model indicated a reduction in CD4+ TCM cells and an increase in effector memory-expressing CD45RA CD8+ T (TEMRA) cells, alongside evidence of cardiac fibrosis. Conversely, combining anti-PDL1 antibody treatment with IL-15 led to a resurgence of CD4+ TCM cells, a reduction in CD8+ TEMRA cells, and a mitigated risk of cardiac fibrosis. Conclusion Our data highlight CD4+ TCM cells’ crucial role in cardiac protection during ICI therapy. IL-15, IL-4I1, and CD4+ TCM cells can serve as therapeutic targets to reduce ICI-associated myocarditis in cancer patients.
0
Citation1
0
Save
0

Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues

Zhiliang Bai et al.Feb 8, 2024
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
0

Extension of the in vivo haploid induction system from maize to wheat

Chenxu Liu et al.Apr 17, 2019
Doubled haploid breeding technology has been one of the most important techniques for accelerating crop breeding. In compare to in vivo haploid induction in maize, which is efficient and background independent, wheat haploid production by interspecific hybridization pollinated with maize is influenced by genetic background and requires rescue of young embryos. Here, we analyzed the homologues of maize haploid induction gene MTL / ZmPLA1 / NLD in several crop species systematically, the homologues are highly conserved in sorghum, millet and wheat etc. Since wheat is a very important polyploidy crop, as a proof of concept, we demonstrated that the in vivo haploid induction method could be extended from diploid maize to hexaploid wheat by knocking out the wheat homologues ( TaPLAs ). Result showed that double knock-out mutation could trigger wheat haploid induction at ~ 2%-3%, accompanied by 30% - 60% seed setting rate. The performance of haploid wheat individual showed shorter plant, narrower leaves and male sterile. Our results also revealed that knockout of TaPLA -A and TaPLA -D do not affect pollen viability. This study not only confirmed the function of the induction gene and explored a new approach for haploid production in wheat, but also provided an example that the in vivo haploid induction could be applied in more crop species with different ploidy levels. Furthermore, by combining with gene editing, it would be a fast and powerful platform for traits improvement in polyploidy crops breeding.
Load More