GP
Grigore Pintilie
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
65
h-index:
21
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
29

Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome

Kaiming Zhang et al.Jul 20, 2020
Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome 1, 2 . The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides 3-6 . To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve 7 pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5' end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.
29
Citation46
0
Save
30

Outcomes of the 2019 EMDataResource model challenge: validation of cryo-EM models at near-atomic resolution

Catherine Lawson et al.Jun 15, 2020
Abstract This paper describes outcomes of the 2019 Cryo-EM Map-based Model Metrics Challenge sponsored by EMDataResource ( www.emdataresource.org ). The goals of this challenge were (1) to assess the quality of models that can be produced using current modeling software, (2) to check the reproducibility of modeling results from different software developers and users, and (3) compare the performance of current metrics used for evaluation of models. The focus was on near-atomic resolution maps with an innovative twist: three of four target maps formed a resolution series (1.8 to 3.1 Å) from the same specimen and imaging experiment. Tools developed in previous challenges were expanded for managing, visualizing and analyzing the 63 submitted coordinate models, and several novel metrics were introduced. The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual laboratory experiments and holdings of structure data archives such as the Protein Data Bank. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived from these benchmark maps by 13 participating teams, representing both widely used and novel modeling approaches. We also evaluate the pros and cons of the commonly used metrics to assess model quality and recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed density in the cryo-EM map.
30
Citation6
0
Save
0

Resolving Individual-Atom of Protein Complex using Commonly Available 300-kV Cryo-electron Microscopes

Kaiming Zhang et al.Aug 19, 2020
Abstract Breakthroughs in single-particle cryo-electron microscopy (cryo-EM) technology have made near-atomic resolution structure determination possible. Here, we report a ∼1.35-Å structure of apoferritin reconstructed from images recorded on a Gatan K3 or a Thermo Fisher Falcon 4 detector in a commonly available 300-kV Titan Krios microscope (G3i) equipped with or without a Gatan post-column energy filter. Our results demonstrate that the atomic-resolution structure determination can be achieved by single-particle cryo-EM with a fraction of a day of automated data collection. These structures resolve unambiguously each heavy atom (C, N, O, and S) in the amino acid side chains with an indication of hydrogen atoms’ presence and position, as well as the unambiguous existence of multiple rotameric configurations for some residues. We also develop a statistical and chemical based protocol to assess the positions of the water molecules directly from the cryo-EM map. In addition, we have introduced a B’ factor equivalent to the conventional B factor traditionally used by crystallography to annotate the atomic resolution model for determined structures. Our findings will be of immense interest among protein and medicinal scientists engaging in both basic and translational research.
0
Paper
Citation5
0
Save
11

Cryogenic electron tomography reveals novel structures in the apical complex of Plasmodium falciparum

Stella Sun et al.Sep 16, 2022
Abstract Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum , face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. In this paper, we perform cryogenic electron tomography (cryo-ET) on isolated merozoites to visualize the apical machinery. Through tomography reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry-secretory-apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii . Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly patterning. These results provide new insight into the essential features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells.
11
Citation1
0
Save
17

A 3.4-Å cryo-EM structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles

Kaiming Zhang et al.Aug 11, 2020
Abstract Human coronavirus NL63 (HCoV-NL63) is an enveloped pathogen of the family Coronaviridae that spreads worldwide and causes up to 10% of all annual respiratory diseases. HCoV-NL63 is typically associated with mild upper respiratory symptoms in children, elderly and immunocompromised individuals. It has also been shown to cause severe lower respiratory illness. NL63 shares ACE2 as a receptor for viral entry with SARS-CoV and SARS-CoV-2. Here we present the in situ structure of HCoV-NL63 spike (S) trimer at 3.4-Å resolution by single-particle cryo-EM imaging of vitrified virions without chemical fixative. It is structurally homologous to that obtained previously from the biochemically purified ectodomain of HCoV-NL63 S trimer, which displays a 3-fold symmetric trimer in a single conformation. In addition to previously proposed and observed glycosylation sites, our map shows density at other amino acid positions as well as differences in glycan structures. The domain arrangement within a protomer is strikingly different from that of the SARS-CoV-2 S and may explain their different requirements for activating binding to the receptor. This structure provides the basis for future studies of spike proteins with receptors, antibodies, or drugs, in the native state of the coronavirus particles.
1

CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism

Mengyuan Xu et al.Aug 15, 2023
ABSTRACT CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 – 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl - -permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl - -permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a “ball-and-chain” gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl - -permeation pathway.