EA
Ethan Alley
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
876
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Unified rational protein engineering with sequence-based deep representation learning

Ethan Alley et al.Oct 21, 2019
+2
S
G
E
Rational protein engineering requires a holistic understanding of protein function. Here, we apply deep learning to unlabeled amino-acid sequences to distill the fundamental features of a protein into a statistical representation that is semantically rich and structurally, evolutionarily and biophysically grounded. We show that the simplest models built on top of this unified representation (UniRep) are broadly applicable and generalize to unseen regions of sequence space. Our data-driven approach predicts the stability of natural and de novo designed proteins, and the quantitative function of molecularly diverse mutants, competitively with the state-of-the-art methods. UniRep further enables two orders of magnitude efficiency improvement in a protein engineering task. UniRep is a versatile summary of fundamental protein features that can be applied across protein engineering informatics. UniRep learns fundamental protein features from millions of amino-acid sequences using a recurrent neural network. This summary of features can then be used for protein engineering.
0
Citation828
0
Save
0

Unified rational protein engineering with sequence-only deep representation learning

Ethan Alley et al.Mar 26, 2019
+3
S
G
E
Abstract Rational protein engineering requires a holistic understanding of protein function. Here, we apply deep learning to unlabelled amino acid sequences to distill the fundamental features of a protein into a statistical representation that is semantically rich and structurally, evolutionarily, and biophysically grounded. We show that the simplest models built on top of this uni fied rep resentation (UniRep) are broadly applicable and generalize to unseen regions of sequence space. Our data-driven approach reaches near state-of-the-art or superior performance predicting stability of natural and de novo designed proteins as well as quantitative function of molecularly diverse mutants. UniRep further enables two orders of magnitude cost savings in a protein engineering task. We conclude UniRep is a versatile protein summary that can be applied across protein engineering informatics.
0
Citation45
0
Save
6

Attribution of genetic engineering: A practical and accurate machine-learning toolkit for biosecurity

Ethan Alley et al.Aug 22, 2020
+6
A
M
E
Abstract The promise of biotechnology is tempered by its potential for accidental or deliberate misuse. Reliably identifying telltale signatures characteristic to different genetic designers, termed genetic engineering attribution , would deter misuse, yet is still considered unsolved. Here, we show that recurrent neural networks trained on DNA motifs and basic phenotype can reach 70% attribution accuracy distinguishing between over 1,300 labs. To make these models usable in practice, we introduce a framework for weighing predictions against other investigative evidence using calibration, and bring our model to within 1.6% of perfect calibration. Additionally, we demonstrate that simple models can accurately predict both the nation-state-of-origin and ancestor labs, forming the foundation of an integrated attribution toolkit which should promote responsible innovation and international security alike.
0

Low-N protein engineering with data-efficient deep learning

Sandhyarani Biswas et al.Jan 24, 2020
+3
G
S
S
Protein engineering has enormous academic and industrial potential. However, it is limited by the lack of experimental assays that are consistent with the design goal and sufficiently high-throughput to find rare, enhanced variants. Here we introduce a machine learning-guided paradigm that can use as few as 24 functionally assayed mutant sequences to build an accurate virtual fitness landscape and screen ten million sequences via in silico directed evolution. As demonstrated in two highly dissimilar proteins, avGFP and TEM-1 β-lactamase, top candidates from a single round are diverse and as active as engineered mutants obtained from previous multi-year, high-throughput efforts. Because it distills information from both global and local sequence landscapes, our model approximates protein function even before receiving experimental data, and generalizes from only single mutations to propose high-functioning epistatically non-trivial designs. With reproducible >500% improvements in activity from a single assay in a 96-well plate, we demonstrate the strongest generalization observed in machine-learning guided protein design to date. Taken together, our approach enables efficient use of resource intensive high-fidelity assays without sacrificing throughput. By encouraging alignment with endpoint objectives, low-N design will accelerate engineered proteins into the fermenter, field, and clinic.