SD
Suelen Dias
Author with expertise in Coronavirus Disease 2019
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
136
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production

Natália Fintelman-Rodrigues et al.Apr 5, 2020
+16
C
C
N
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors, such as atazanavir (ATV). ATV is of high interest because of its bioavailability within the respiratory tract. Our results show that ATV could dock in the active site of SARS-CoV-2 Mpro, with greater strength than LPV. ATV blocked Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells, human pulmonary epithelial cell line and primary monocytes, impairing virus-induced enhancement of IL-6 and TNF-α levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.
0
Citation65
0
Save
25

Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators

Suelen Dias et al.Aug 23, 2020
+16
D
C
S
Abstract Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism and energy homeostasis, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro , SARS-CoV-2 infection modulates pathways of lipid synthesis and uptake, including CD36, SREBP-1, PPARγ and DGAT-1 in monocytes and triggered LD formation in different human cells. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected cells. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of pro-inflammatory mediators. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.
25
Citation26
0
Save
38

The in vitro antiviral activity of the anti-hepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2

Carolina Sacramento et al.Jun 16, 2020
+27
S
M
C
Abstract Current approaches of drugs repurposing against 2019 coronavirus disease (COVID-19) have not proven overwhelmingly successful and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to cause major global mortality. Daclatasvir (DCV) and sofosbuvir (SFV) are clinically approved against hepatitis C virus (HCV), with satisfactory safety profile. DCV and SFV target the HCV enzymes NS5A and NS5B, respectively. NS5A is endowed with pleotropic activities, which overlap with several proteins from SARS-CoV-2. HCV NS5B and SARS-CoV-2 nsp12 are RNA polymerases that share homology in the nucleotide uptake channel. We thus tested whether SARS-COV-2 would be susceptible these anti-HCV drugs. DCV consistently inhibited the production of infectious SARS-CoV-2 in Vero cells, in the hepatoma cell line (HuH-7) and in type II pneumocytes (Calu-3), with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than DCV, SFV and its nucleoside metabolite inhibited replication in Calu-3 cells. Moreover, SFV/DCV combination (1:0.15 ratio) inhibited SARS-CoV-2 with EC 50 of 0.7:0.1 μM in Calu-3 cells. SFV and DCV prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Both drugs inhibited independent events during RNA synthesis and this was particularly the case for DCV, which also targeted secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial DCV in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. Doses higher than those approved may ultimately be required, but these data provide a basis to further explore these agents as COVID-19 antiviral candidates.
38
Citation20
0
Save
58

SARS-CoV-2 proteins bind heme and hemoglobin

Guilherme Lechuga et al.Apr 16, 2021
+12
C
F
G
Abstract The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome virus 2 (SARS-CoV-2), has led to a global crisis that included collapsing healthcare systems and shut-down communities, producing considerable economic burden. Despite the number of effective vaccines quickly implemented, the emergence of new variants is a primary concern. The scientific community undertook a rapid response to better study this new virus. However, critical questions about viral protein-protein interactions and mechanisms of its physiopathology are still unclear. Although severe COVID-19 was associated with hematological dysfunctions, scarce experimental data were produced about iron dysmetabolism and the viral proteins’ possible interaction with hemoglobin (Hb) chains. This work demonstrates the binding of SARS-CoV-2 proteins to hemin and Hb using a multimethodological approach. In silico analysis indicated binding motifs between a cavity in the viral nucleoprotein and hemoglobin’s porphyrin coordination region. Different hemin binding capacities of mock and SARS-CoV-2-infected culture extracts were noticed using gel electrophoresis and TMB staining. Hemin-binding proteins were isolated from SARS-CoV-2-infected cells by affinity chromatography and identified by shotgun proteomics, indicating that structural (nucleoprotein, spike, and membrane protein) and non-structural (Nsp3 and Nsp7) viral proteins interact with hemin. In vitro analyses of virus adsorption to host cells and viral replication studies in Vero cells demonstrated inhibitory activities - at different levels - by hemin, protoporphyrin IX (PpIX) Hb. Strikingly, free Hb at 1μM suppressed viral replication (99 %), and its interaction with SARS-CoV-2 was localized to the RBD region of the Spike protein. The findings showed clear evidence of new avenues to disrupt viral replication and understand virus physiopathology that warrants further investigation.
58
Citation10
0
Save
1

VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells

Jairo Temerozo et al.Jul 26, 2020
+14
N
C
J
Abstract Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, VIP and PACAP, highly similar neuropeptides, decreased the SARS-CoV-2 genome replication in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.
1
Citation8
0
Save
10

Inhibition of SARS-CoV-2 infection in human cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoskeleton architecture and contractility

José Salerno et al.Feb 21, 2021
+24
M
D
J
ABSTRACT Heart dysfunction, represented by conditions such as myocarditis and arrhythmia, has been reported in COVID-19 patients. Therapeutic strategies focused on the cardiovascular system, however, remain scarce. The Sigma-1 receptor (S1R) has been recently proposed as a therapeutic target because its inhibition reduces SARS-CoV-2 replication. To investigate the role of S1R in SARS-CoV-2 infection in the heart, we used human cardiomyocytes derived from induced pluripotent stem cells (hiPSC-CM) as an experimental model. Here we show that the S1R antagonist NE-100 decreases SARS-CoV-2 infection and viral replication in hiPSC-CMs. Also, NE-100 reduces cytokine release and cell death associated with infection. Because S1R is involved in cardiac physiology, we investigated the effects of NE-100 in cardiomyocyte morphology and function. We show that NE-100 compromises cytoskeleton integrity and reduces beating frequency, causing contractile impairment. These results show that targeting S1R to challenge SARS-CoV-2 infection may be a useful therapeutic strategy but its detrimental effects in vivo on cardiac function should not be ignored.
10
Citation6
0
Save
1

Unlike Chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells and does not induce viral variants

Carolina Sacramento et al.Jul 21, 2021
+19
S
A
C
Abstract Repositioning of clinical approved drugs could represent the fastest way to identify therapeutic options during public health emergencies, the majority of drugs explored for repurposing as antivirals for 2019 coronavirus disease (COVID-19) have failed to demonstrate clinical benefit. Without specific antivirals, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to cause major global mortality. Antimalarial drugs, such as chloroquine (CQ)/hydroxychloroquine (HCQ) and mefloquine have emerged as potential anti-SARS-CoV-2 antivirals. CQ/HCQ entered the Solidarity and RECOVERY clinical trials against COVID-19 and showed lack of efficacy. Importantly, mefloquine is not a 4-aminoquinoline like CQ and HCQ and has been previously repurposed for other respiratory diseases. Unlike the 4-aminoquinolines that accumulate in the high pH of intracellular lysosomes of the lung, the high respiratory tract penetration of mefloquine is driven by its high lipophilicity. While CQ and HCQ exhibit activity in Vero E6 cells, their activity is obviated in TMPRSS2-expressing cells, such as Calu-3 cells, which more accurately recapitulate in vivo entry mechanisms for SARS-CoV-2. Accordingly, here we report the anti-SARS-CoV-2 activity of mefloquine in Calu-3 type II pneumocytes and primary human monocytes. Mefloquine inhibited SARS-CoV-2 replication in Calu-3 cells with low cytotoxicity and EC 50 and EC 90 values of 1.2 and 5.3 µM, respectively. In addition, mefloquine reduced up to 68% the SARS-CoV-2 RNA levels in infected monocytes, reducing viral-induced inflammation. Mefloquine blocked early steps of the SARS-CoV-2 replicative cycle and was less prone than CQ to induce drug-associated viral mutations and synergized with RNA polymerase inhibitor. The pharmacological parameters of mefloquine are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points that this drug may accumulate in the lungs. These data indicate that mefloquine could represent an orally available clinically approved drug option against COVID-19 and should not be neglected on the basis of the failure of CQ and HCQ.
1
Citation1
0
Save
1

WIN 55,212-2 shows anti-inflammatory and survival properties in human iPSC-derived cardiomyocytes infected with SARS-CoV-2

Luiz Aragão et al.Feb 21, 2021
+25
D
C
L
Abstract Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that cause damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the “cytokine storm”, strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins 6, 8, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.
1

Non-permissive SARS-CoV-2 infection in human neurospheres

Carolina Pedrosa et al.Sep 14, 2020
+26
J
S
C
Abstract Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.
0

Extracellular vesicles from primary human macrophages stimulated with VIP or PACAP mediate anti-SARS-CoV-2 activities in monocytes through NF-κB signaling pathway.

Luis Arteaga-Blanco et al.Jul 1, 2024
+13
L
J
L
Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.