IF
Ilya Finkelstein
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
42
(69% Open Access)
Cited by:
2,730
h-index:
43
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: A new approach

Kyungwon Kwak et al.Sep 26, 2007
Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe structural dynamics under thermal equilibrium conditions on time scales ranging from femtoseconds to ∼100ps and longer. One of the important uses of 2D-IR spectroscopy is to monitor the dynamical evolution of a molecular system by reporting the time dependent frequency fluctuations of an ensemble of vibrational probes. The vibrational frequency-frequency correlation function (FFCF) is the connection between the experimental observables and the microscopic molecular dynamics and is thus the central object of interest in studying dynamics with 2D-IR vibrational echo spectroscopy. A new observable is presented that greatly simplifies the extraction of the FFCF from experimental data. The observable is the inverse of the center line slope (CLS) of the 2D spectrum. The CLS is the inverse of the slope of the line that connects the maxima of the peaks of a series of cuts through the 2D spectrum that are parallel to the frequency axis associated with the first electric field-matter interaction. The CLS varies from a maximum of 1 to 0 as spectral diffusion proceeds. It is shown analytically to second order in time that the CLS is the Tw (time between pulses 2 and 3) dependent part of the FFCF. The procedure to extract the FFCF from the CLS is described, and it is shown that the Tw independent homogeneous contribution to the FFCF can also be recovered to yield the full FFCF. The method is demonstrated by extracting FFCFs from families of calculated 2D-IR spectra and the linear absorption spectra produced from known FFCFs. Sources and magnitudes of errors in the procedure are quantified, and it is shown that in most circumstances, they are negligible. It is also demonstrated that the CLS is essentially unaffected by Fourier filtering methods (apodization), which can significantly increase the efficiency of data acquisition and spectral resolution, when the apodization is applied along the axis used for obtaining the CLS and is symmetrical about τ=0. The CLS is also unchanged by finite pulse durations that broaden 2D spectra.
0

Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes

Ching‐Lin Hsieh et al.May 30, 2020
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion protein that is metastable and difficult to produce recombinantly in large quantities. Here, we designed and expressed over 100 structure-guided spike variants based upon a previously determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical and structural characterization of these variants identified numerous individual substitutions that increased protein yields and stability. The best variant, HexaPro, has six beneficial proline substitutions leading to ~10-fold higher expression than its parental construct and is able to withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.
73

Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-2 Omicron spike protein

Kamyab Javanmardi et al.Apr 18, 2022
Summary The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the repeated emergence of variants of concern. The Omicron variant has two dominant sub-lineages, BA.1 and BA.2, each with unprecedented numbers of nonsynonymous and indel spike protein mutations: 33 and 29, respectively. Some of these mutations individually increase transmissibility and enhance immune evasion, but their interactions within the Omicron mutational background is unknown. We characterize the molecular effects of all Omicron spike mutations on expression, human ACE2 receptor affinity, and neutralizing antibody recognition. We show that key mutations enable escape from neutralizing antibodies at a variety of epitopes. Stabilizing mutations in the N-terminal and S2 domains of the spike protein compensate for destabilizing mutations in the receptor binding domain, thereby enabling the record number of mutations in Omicron sub-lineages. Taken together, our results provide a comprehensive account of the mutational effects in the Omicron spike protein and illuminate previously unknown mechanisms of how the N-terminal domain can compensate for destabilizing mutations within the more evolutionarily constrained RBD.
73
Citation9
0
Save
49

CTCF and R-loops are boundaries of cohesin-mediated DNA looping

Hongshan Zhang et al.Sep 16, 2022
Abstract Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging of CTCF-cohesin collisions, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-electron microscopy structure of the intact cohesin-CTCF complex reveals that this CTCF motif ahead of zinc-fingers can only reach its binding site on the STAG1 cohesin subunit when the N-terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling is intrinsic to cohesin itself, and other proteins can substitute for CTCF in fruit flies and other eukaryotes. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries. Our results provide direct evidence that CTCF orientation and R-loops shape the 3D genome by directly regulating cohesin.
49
Citation9
0
Save
41

Rapid characterization of spike variants via mammalian cell surface display

Kamyab Javanmardi et al.Mar 30, 2021
Abstract The SARS-CoV-2 spike (S) protein is a critical component of subunit vaccines and a target for neutralizing antibodies. Spike is also undergoing immunogenic selection with clinical variants that increase infectivity and partially escape convalescent plasma. Here, we describe spike display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by thirteen neutralizing antibodies (nAbs). An alanine scan of all five N-terminal domain (NTD) loops highlights a public class of epitopes in the N1, N3, and N5 loops that are recognized by most of the NTD-binding nAbs. Some clinical NTD substitutions abrogate binding to these epitopes but are circulating at low frequencies around the globe. NTD mutations in variants of concern B.1.1.7 (United Kingdom), B.1.351 (South Africa), B.1.1.248 (Brazil), and B.1.427/B.1.429 (California) impact spike expression and escape most NTD-targeting nAbs. However, two classes of NTD nAbs still bind B.1.1.7 spikes and neutralize in pseudoviral assays. B.1.351 and B.1.1.248 include compensatory mutations that either increase spike expression or increase ACE2 binding affinity. Finally, B.1.351 and B.1.1.248 completely escape a potent ACE2 peptide mimic. We anticipate that spike display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.
41
Citation5
0
Save
Load More