JP
Junchol Park
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
719
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
386

Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings

Nicholas Steinmetz et al.Oct 28, 2020
Abstract To study the dynamics of neural processing across timescales, we require the ability to follow the spiking of thousands of individually separable neurons over weeks and months, during unrestrained behavior. To address this need, we introduce the Neuropixels 2.0 probe together with novel analysis algorithms. The new probe has over 5,000 sites and is miniaturized such that two probes plus a headstage, recording 768 sites at once, weigh just over 1 g, suitable for implanting chronically in small mammals. Recordings with high quality signals persisting for at least two months were reliably obtained in two species and six different labs. Improved site density and arrangement combined with new data processing methods enable automatic post-hoc stabilization of data despite brain movements during behavior and across days, allowing recording from the same neurons in the mouse visual cortex for over 2 months. Additionally, an optional configuration allows for recording from multiple sites per available channel, with a penalty to signal-to-noise ratio. These probes and algorithms enable stable recordings from >10,000 sites during free behavior in small animals such as mice.
0

Preserved neural dynamics across animals performing similar behaviour

Mostafa Safaie et al.Nov 8, 2023
Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.
111

Nonlinear manifolds underlie neural population activity during behaviour

Cátia Fortunato et al.Jul 19, 2023
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey motor cortex, mouse motor cortex, mouse striatum, and human motor cortex, we show that: 1) neural manifolds are intrinsically nonlinear; 2) the degree of their nonlinearity varies across architecturally distinct brain regions; and 3) manifold nonlinearity becomes more evident during complex tasks that require more varied activity patterns. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
46

Preserved neural population dynamics across animals performing similar behaviour

Mostafa Safaie et al.Sep 27, 2022
Abstract Animals of the same species often exhibit similar behaviours that are advantageously adapted to their body and their environment. These behaviours are shaped by selection pressures over evolutionary timescales at the species level, yet each individual produces these behaviours using a different, uniquely constructed brain. It remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of a given individual. Here, we hypothesised that the adaptive behaviour of a species requires specific neural population ‘latent dynamics’. These latent dynamics should thus be preserved and identifiable across individuals within a species, regardless of the idiosyncratic aspects of each individual’s brain. Using recordings of neural populations from monkey and mouse motor cortex, we show that individuals from the same species share surprisingly similar neural dynamics when they perform the same behaviour. The similarity in neural population dynamics extends beyond cortical regions to the dorsal striatum, an evolutionarily older structure, and also holds when animals con-sciously plan future movements without overt behaviour. These preserved dynamics are behaviourally-relevant, allowing decoding of intended and ongoing movements across individuals. We posit that these emergent neural population dynamics result from evolutionarily-imposed constraints on brain development, and reflect a fundamental property of the neural basis of behaviour.
0

Sex differences in reward- and punishment-guided actions

Tara Chowdhury et al.Mar 18, 2019
Differences in the prevalence and presentation of psychiatric illnesses in men and women suggest that neurobiological sex differences confer vulnerability or resilience in these disorders. Rodent behavioral models are critical for understanding the mechanisms of these differences. Reward processing and punishment avoidance are fundamental dimensions of the symptoms of psychiatric disorders. Here we explored sex differences along these dimensions using multiple and distinct behavioral paradigms. We found no sex difference in reward-guided associative learning but a faster punishment-avoidance learning in females. After learning, females were more sensitive than males to probabilistic punishment but less sensitive when punishment could be avoided with certainty. No sex differences were found in reward-guided cognitive flexibility. Thus, sex differences in goal-directed behaviors emerged selectively when there was an aversive context. These differences were critically sensitive to whether the punishment was certain or unpredictable. Our findings with these new paradigms provide conceptual and practical tools for investigating brain mechanisms that account for sex differences in susceptibility to anxiety and impulsivity. They may also provide insight for understanding the evolution of sex-specific optimal behavioral strategies in dynamic environments.
0

Flexible routing of motor control signals through neocortical projection neuron classes

Junchol Park et al.Sep 18, 2019
Motor cortex is part of a network of central brain circuits that together enable robust, flexible, and efficient movement in mammals. Recent work has revealed rich dynamics in mammalian motor cortex thought to underlie robust and flexible movements. These dynamics are a consequence of recurrent connectivity between individual cortical neuron subtypes8, but it remains unclear how such complex dynamics relate to individual cell types and how they covary with continuous behavioral features. We investigated this in mice, combining a self-paced, kinematically-variable, cortex-dependent, bimanual motor task with large-scale neural recordings that included cell-type information. This revealed highly distributed correlates of movement execution across all layers of forelimb motor cortex and subcortical areas. However, we observed a surprising relative lack of modulation in the putative source of motor commands brain-stem projecting (pyramidal tract, PT) neurons. By contrast, striatal/cortical projecting (intratelencephalic, IT) neurons showed much stronger correlations with movement kinematics. Cell-type specific inactivation of PT neurons during movement execution had little effect on behavior whereas inactivation of IT neurons produced dramatic decreases in the speed and amplitude of forelimb movements. PT inactivation elicited rapid, compensatory changes in activity distributed across multiple cortical layers and subcortical regions helping to explain minimal effects of inactivation on behavior. This work illustrates how cortical-striatal population dynamics play a critical role in the control of movement while maintaining substantial flexibility in the extent to which PT projection neurons are a requisite contributor to descending motor commands.
1

Conjoint specification of action by neocortex and striatum

Junchol Park et al.Oct 5, 2023
Abstract The interplay between two major forebrain structures - cortex and subcortical striatum - is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated while the primary motor cortex is involved in the online control of movement execution. Recent data indicates that striatum may also be critical for specifying movement execution. These alternatives have been difficult to reconcile because when comparing very distinct actions, as in the vast majority of work to date, they make essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity during similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar, but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify flexible parameters of action during movement execution. One sentence summary Motor cortex and subcortical striatum act in concert to specify the movement parameters of a reach-to-pull action in mice.