BP
Benjamin Petsch
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
660
h-index:
21
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs

Margit Schnee et al.Jun 23, 2016
Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G) encoding messenger RNA (mRNA) to induce potent neutralizing antibodies (VN titers) in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.
0
Citation185
0
Save
48

Optimised non-coding regions of mRNA SARS-CoV-2 vaccine CV2CoV improves homogeneous and heterogenous neutralising antibody responses

Nicole Roth et al.May 13, 2021
Abstract More than two years after the emergence of SARS-CoV-2, 33 COVID-19 vaccines, based on different platforms, have been approved in 197 countries. Novel variants that are less efficiently neutralised by antibodies raised against ancestral SARS-CoV-2 are circulating, highlighting the need to adapt vaccination strategies. Here, we compare the immunogenicity of a first-generation mRNA vaccine candidate, CVnCoV, with a second-generation mRNA vaccine candidate, CV2CoV, in rats. Higher levels of spike (S) protein expression were observed in cell culture with CV2CoV mRNA than with CVnCoV mRNA. Vaccination with CV2CoV also induced higher titres of virus neutralising antibodies with accelerated kinetics in rats compared with CVnCoV. Significant cross-neutralization of the SARS-CoV-2 variants, Alpha (B.1.1.7), Beta (B.1.351), and the ‘mink’ variant (B1.1.298) that were circulating at the time in early 2021 was also demonstrated. In addition, CV2CoV induced higher levels of antibodies at lower doses than CVnCoV, suggesting that dose-sparing could be possible with the next generation SARS-CoV-2 vaccine which could improve worldwide vaccine supply.
48
Citation17
0
Save
22

Optimization of Non-Coding Regions Improves Protective Efficacy of an mRNA SARS-CoV-2 Vaccine in Nonhuman Primates

Makda Gebre et al.Aug 16, 2021
The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.
22
Citation7
0
Save
90

CVnCoV protects human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2

Donata Hoffmann et al.Mar 22, 2021
Abstract The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines as the primary control option. Recently, viral mutants termed “variants of concern” (VOC) have emerged with the potential to escape host immunity. VOC B.1.351 was first discovered in South Africa in late 2020, and causes global concern due to poor neutralization with propensity to evade preexisting immunity from ancestral strains. We tested the efficacy of a spike encoding mRNA vaccine (CVnCoV) against the ancestral strain BavPat1 and the novel VOC B.1.351 in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice developed elevated SARS-CoV-2 RBD-specific antibody as well as neutralization titers against the ancestral strain BavPat1. Neutralization titers against VOC B.1.351 were readily detectable but significantly reduced compared to BavPat1. VOC B.1.351-infected control animals experienced a delayed course of disease, yet nearly all SARS-CoV-2 challenged naïve mice succumbed with virus dissemination and high viral loads. CVnCoV vaccine completely protected the animals from disease and mortality caused by either viral strain. Moreover, SARS-CoV-2 was not detected in oral swabs, lung, or brain in these groups. Only partial protection was observed in mice receiving the formalin-inactivated virus preparation. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV shows complete disease protection against the novel VOC B.1.351 in our studies.
90
Citation4
0
Save
4

Assessment of Immunogenicity and Efficacy of CV0501 mRNA-based Omicron COVID-19 Vaccination in Small Animal Models

Nicole Roth et al.Jan 4, 2023
Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represent the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS-CoV-2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP)-formulated RNActive® N1-methylpseudouridine (N1mΨ) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1mΨ), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1mΨ immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS-CoV-2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials ( ClinicalTrials.gov Identifier: NCT05477186 ).
4
Citation2
0
Save
Load More