YP
Yury Popov
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Beth Israel Deaconess Medical Center, Harvard University, Lomonosov Moscow State University
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
8
h-index:
38
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
408

A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients

Yered Pita-Juárez et al.Oct 24, 2023
+60
N
D
Y
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
408
Citation6
0
Save
3

Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in PSC

Muyiwa Awoniyi et al.Oct 24, 2023
+18
B
J
M
Abstract Objective Conflicting microbiota data exist for primary sclerosing cholangitis (PSC) and experimental models. Goal: Define complex interactions between resident microbes and their association in PSC patients by studying antibiotic-treated specific pathogen-free (SPF) and germ-free (GF) multi-drug-resistant 2 deficient ( mdr2 -/- ) mice. Design We measured weights, liver enzymes, RNA expression, histological, immunohistochemical and fibrotic biochemical parameters, fecal 16s rRNA gene profiling, and metabolomic endpoints in gnotobiotic and antibiotic-treated SPF mdr2 -/- mice and targeted metagenomic analysis in PSC patients. Results GF mdr2 -/- mice had exaggerated hepatic inflammation and fibrosis with 100% mortality by 8 weeks; early SPF autologous stool transplantation rescued liver-related mortality. Broad-spectrum antibiotics and vancomycin alone accelerated disease in weanling SPF mdr2 -/- mice, indicating that vancomycin-sensitive resident microbiota protect against hepatobiliary disease. Vancomycin treatment selectively decreased Lachnospiraceae and short-chain fatty acids (SCFAs) but expanded Enterococcus and Enterobacteriaceae. Antibiotics increased cytolysin-expressing E. faecalis and E. coli liver translocation; colonization of gnotobiotic mdr2 -/- mice with translocated E. faecalis and E. coli strains accelerated liver inflammation and mortality. Lachnospiraceae colonization of antibiotic pre-treated mdr2 -/- mice reduced liver fibrosis, inflammation and translocation of pathobionts, while Lachnospiraceae-produced SCFA decreased fibrosis. Fecal E. faecalis / Enterobacteriaceae was positively and Lachnospiraceae was negatively associated with PSC patients’ clinical severity Mayo risk scores. Conclusions We identified specific functionally protective and detrimental resident bacterial species in mdr2 -/- mice and PSC patients with associated clinical outcomes. These insights may guide personalized targeted therapeutic interventions in PSC patients.
106

A single-cell and spatial atlas of autopsy tissues reveals pathology and cellular targets of SARS-CoV-2

Toni Delorey et al.Oct 11, 2023
+99
G
C
T
The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63 + intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.
106
0
Save
3

Increased susceptibility to ischemia causes exacerbated response to microinjuries in the cirrhotic liver

Brian Leaker et al.Oct 24, 2023
+3
K
M
B
Abstract Background Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step towards determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Methods Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0hr up to 14d after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Results Healthy rats showed little damage beyond the initial microinjury and healed completely by 7d without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6hr after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4hr. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Conclusions The cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.
1

Conserved long noncoding RNATILAMpromotes liver fibrosis through interaction with PML in hepatic stellate cells

Cheng Sun et al.Oct 24, 2023
+19
K
C
C
Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies.We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM .TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs.TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.