RD
Richard Delorme
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
40
h-index:
22
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles

Anne-Kathrin Lutz et al.Jun 10, 2020
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
1
Citation40
0
Save
111

Brain charts for the human lifespan which can be used as reference normals in future imaging studies

Richard Bethlehem et al.Jun 1, 2021
Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, there are no reference standards against which to anchor measures of individual differences in brain morphology, in contrast to growth charts for traits such as height and weight. Here, we built an interactive online resource (www.brainchart.io) to quantify individual differences in brain structure from any current or future magnetic resonance imaging (MRI) study, against models of expected age-related trends. With the goal of basing these on the largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies across 6 continents. When quantified as centile scores relative to the reference models, individual differences show high validity with non-MRI brain growth estimates and high stability across longitudinal assessment. Centile scores helped identify previously unreported brain developmental milestones and demonstrated increased genetic heritability compared to non-centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical differences across neurological and psychiatric disorders emerging during development and ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, standardised quantification of individual variation and for characterizing deviation from age-related trends. Our global collaborative study provides such an anchorpoint for basic neuroimaging research and will facilitate implementation of research-based standards in clinical studies.
0

Reproducible functional connectivity alterations are associated with autism spectrum disorder

Štefan Holiga et al.Apr 18, 2018
Despite the high clinical burden little is known about pathophysiology underlying autism spectrum disorder (ASD). Recent resting state functional magnetic resonance imaging (rs-fMRI) studies have found atypical synchronization of brain activity in ASD. However, no consensus has been reached on the nature and clinical relevance of these alterations. Here we address these questions in the most comprehensive, large-scale effort to date comprising evaluation of four large ASD cohorts. We followed a strict exploration and replication procedure to identify core rs-fMRI functional connectivity (degree centrality) alterations associated with ASD as compared to typically developing (TD) controls (ASD: N=841, TD: N=984). We then tested for associations of these imaging phenotypes with clinical and demographic factors such as age, sex, medication status and clinical symptom severity. We find reproducible patterns of ASD-associated functional hyper- and hypo-connectivity with hypo-connectivity being primarily restricted to sensory-motor regions and hyper-connectivity hubs being predominately located in prefrontal and parietal cortices. We establish shifts in between-network connectivity from outside to within the identified regions as a key driver of these abnormalities. The magnitude of these alterations is linked to core ASD symptoms related to communication and social interaction and is not affected by age, sex or medication status. The identified brain functional alterations provide a reproducible pathophysiological phenotype underlying the diagnosis of ASD reconciling previous divergent findings. The large effect sizes in standardized cohorts and the link to clinical symptoms emphasize the importance of the identified imaging alterations as potential treatment and stratification biomarkers for ASD.