AZ
Andrew Zalesky
Author with expertise in Analysis of Brain Functional Connectivity Networks
University of Melbourne, Melbourne Health, Information Technology University
+ 13 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
36
(67% Open Access)
Cited by:
69
h-index:
69
/
i10-index:
192
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models

Johanna Bayer et al.Oct 24, 2023
+6
S
R
J
A bstract The potential of normative modeling to make individualized predictions from neuroimaging data has enabled inferences that go beyond the case-control approach. However, site effects are often confounded with variables of interest in a complex manner and can bias estimates of normative models, which has impeded the application of normative models to large multi-site neuroimaging data sets. In this study, we suggest accommodating for these site effects by including them as random effects in a hierarchical Bayesian model. We compared the performance of a linear and a non-linear hierarchical Bayesian model in modeling the effect of age on cortical thickness. We used data of 570 healthy individuals from the ABIDE (autism brain imaging data exchange) data set in our experiments. In addition, we used data from individuals with autism to test whether our models are able to retain clinically useful information while removing site effects. We compared the proposed single stage hierarchical Bayesian method to several harmonization techniques commonly used to deal with additive and multiplicative site effects using a two stage regression, including regressing out site and harmonizing for site with ComBat, both with and without explicitly preserving variance related to age and sex as biological variation of interest. In addition, we made predictions from raw data, in which site has not been accommodated for. The proposed hierarchical Bayesian method showed the best predictive performance according to multiple metrics. Beyond that, the resulting z-scores showed little to no residual site effects, yet still retained clinically useful information. In contrast, performance was particularly poor for the regression model and the ComBat model in which age and sex were not explicitly modeled. In all two stage harmonization models, predictions were poorly scaled, suffering from a loss of more than 90 % of the original variance. Our results show the value of hierarchical Bayesian regression methods for accommodating site variation in neuroimaging data, which provides an alternative to harmonization techniques. While the approach we propose may have broad utility, our approach is particularly well suited to normative modelling where the primary interest is in accurate modelling of inter-subject variation and statistical quantification of deviations from a reference model. 1 Highlights Development and presentation of normative modeling approach based on hierarchical Bayesian modeling that can be applied to large multi-site neuroimaging data sets. Comparison of performance of Hierarchical Bayesian model including site as predictor to several common ways to harmonize for multi-site effects. Presentation of normative modeling as site correction tool.
110

Machine learning prediction of cognition from functional connectivity: Are feature weights reliable?

Ye Tian et al.Oct 24, 2023
A
Y
Abstract Cognitive performance can be predicted from an individual’s functional brain connectivity with modest accuracy using machine learning approaches. As yet, however, predictive models have arguably yielded limited insight into the neurobiological processes supporting cognition. To do so, feature selection and feature weight estimation need to be reliable to ensure that important connections and circuits with high predictive utility can be reliably identified. We comprehensively investigate feature weight test-retest reliability for various predictive models of cognitive performance built from resting-state functional connectivity networks in healthy young adults (n=400). Despite achieving modest prediction accuracies (r=0.2-0.4), we find that feature weight reliability is generally poor for all predictive models (ICC<0.3), and significantly poorer than predictive models for overt biological attributes such as sex (ICC ≈ 0.5). Larger sample sizes (n=800), the Haufe transformation, non-sparse feature selection/regularization and smaller feature spaces marginally improve reliability (ICC<0.4). We elucidate a tradeoff between feature weight reliability and prediction accuracy and find that univariate statistics are marginally more reliable than feature weights from predictive models. Finally, we show that measuring agreement in feature weights between cross-validation folds provides inflated estimates of feature weight reliability. We thus recommend for reliability to be estimated out-of-sample, if possible. We argue that rebalancing focus from prediction accuracy to model reliability may facilitate mechanistic understanding of cognition with machine learning approaches.
38

Network communication models improve the behavioral and functional predictive utility of the human structural connectome

Caio Seguin et al.Oct 24, 2023
A
Y
C
The connectome provides a structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication paths in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Structural connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (i) used to perform predictions of five data-driven behavioral dimensions and (ii) correlated to interregional resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, network communication models, in particular communicability and navigation, improved the performance of structural connectomes. Accounting for polysynaptic communication also significantly strengthened structure-function coupling, with the navigation and shortest paths models leading to 35-65% increases in association strength with FC. Combining behavioral and functional results into a single ranking of communication models positioned navigation as the top model, suggesting that it may more faithfully recapitulate underlying neural signaling patterns. We conclude that network communication models augment the functional and behavioral predictive utility of the human structural connectome and contribute to narrowing the gap between brain structure and function.
38
Citation8
0
Save
31

Individual variations in “Brain age” relate to early life factors more than to longitudinal brain change

Dídac Vidal-Piñeiro et al.Oct 24, 2023
+28
S
Y
D
Abstract Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher than expected brain age is thought partially to reflect above-average rate of brain aging. We explicitly tested this assumption in two large datasets and found no association between cross-sectional brain age and steeper brain decline measured longitudinally. Rather, brain age in adulthood was associated with early-life influences indexed by birth weight and polygenic scores. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
31
Citation7
0
Save
1

Leveling up: improving power in fMRI by moving beyond cluster-level inference

Stephanie Noble et al.Oct 24, 2023
D
A
A
S
Abstract Inference in neuroimaging commonly occurs at the level of “clusters” of neighboring voxels or connections, thought to reflect functionally specific brain areas. Yet increasingly large studies reveal effects that are shared throughout the brain, suggesting that reported clusters may only reflect the “tip of the iceberg” of underlying effects. Here, we empirically compare power of traditional levels of inference (edge and cluster) with broader levels of inference (network and whole-brain) by resampling functional connectivity data from the Human Connectome Project (n=40, 80, 120). Only network- and whole brain-level inference attained or surpassed “adequate” power ( β =80%) to detect an average effect, with almost double the power for network-compared with cluster-level procedures at more typical sample sizes. Likewise, effects tended to be widespread, and more widespread pooling resulted in stronger magnitude effects. Power also substantially increased when controlling FDR rather than FWER. Importantly, there may be similar implications for task-based activation analyses where effects are also increasingly understood to be widespread. However, increased power with broader levels of inference may diminish the specificity to localize effects, especially for non-task contexts. These findings underscore the benefit of shifting the scale of inference to better capture the underlying signal, which may unlock opportunities for discovery in human neuroimaging.
1
Citation6
0
Save
1

Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation

Caio Seguin et al.Oct 24, 2023
+3
O
M
C
Communication between gray matter regions underpins all facets of brain function. To date, progress in understanding large-scale neural communication has been hampered by the inability of current neuroimaging techniques to track signaling at whole-brain, high-spatiotemporal resolution. Here, we use 2.77 million intracranial EEG recordings, acquired following 29,055 single-pulse electrical stimulations in a total of 550 individuals, to study inter-areal communication in the human brain. We found that network communication models—computed on structural connectivity inferred from diffusion MRI—can explain the propagation of direct, focal electrical stimulation through white matter, measured at millisecond time scales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (out-of-sample R 2 =54%). Our work contributes towards the biological validation of concepts in network neuroscience and provides insight into how white matter connectivity shapes inter-areal signaling. We anticipate that our findings will have implications for research on macroscale neural information processing and the design of brain stimulation paradigms.
1
Citation5
0
Save
0

The genetic architecture of biological age in nine human organ systems

Junhao Wen et al.Sep 6, 2024
+8
I
Y
J
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10
54

The structural connectome constrains fast brain dynamics

Pierpaolo Sorrentino et al.Oct 24, 2023
+7
R
C
P
Abstract Brain activity during rest displays complex, rapidly evolving patterns in space and time. Structural connections comprising the human connectome are hypothesized to impose constraints on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the extent to which fast neural dynamics in the human brain are constrained by structural connections inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-brain activity at the millisecond scale from source-reconstructed MEG data, estimating the probability that any two brain regions will significantly deviate from baseline activity in consecutive time epochs. We find that the structural connectome relates to, and likely affects, the rapid spreading of neuronal avalanches, evidenced by a significant association between these transition probabilities and structural connectivity strengths (r=0.37, p<0.0001). This finding opens new avenues to study the relationship between brain structure and neural dynamics.
1

Two long-axis dimensions of hippocampal cortical integration support memory function across the adult lifespan

Kristin Nordin et al.Oct 24, 2023
+9
F
R
K
The hippocampus is a complex structure critically involved in numerous behavior-regulating systems. In young adults, multiple overlapping spatial modes along its longitudinal and transverse axes describe the organization of its functional integration with neocortex, extending the traditional framework emphasizing functional differences between sharply segregated hippocampal subregions. Yet, it remains unknown whether these modes (i.e., gradients) persist across the adult human lifespan, and relate to memory and molecular markers associated with brain function and cognition. In two independent samples, we demonstrate that the principal anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical functional connectivity, representing distinct dimensions of macroscale cortical organization, manifest across the adult lifespan. Specifically, individual differences in topography of the second-order gradient predicted episodic memory and mirrored dopamine D1 receptor distribution, capturing shared functional and molecular organization. Older age was associated with less distinct transitions along gradients (i.e., increased functional homogeneity). Importantly, a youth-like gradient profile predicted preserved episodic memory, emphasizing age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore a critical role of mapping multidimensional hippocampal organization in understanding the neural circuits that support memory across the adult lifespan.
41

Network communication models narrow the gap between the modular organization of structural and functional brain networks

Caio Seguin et al.Oct 24, 2023
+2
O
S
C
Structural and functional brain networks are modular. Canonical functional systems, such as the default mode network, are well-known modules of the human brain and have been implicated in a large number of cognitive, behavioral and clinical processes. However, modules delineated in structural brain networks inferred from tractography generally do not recapitulate canonical functional systems. Neuroimaging evidence suggests that functional connectivity between regions in the same systems is not always underpinned by anatomical connections. As such, direct structural connectivity alone would be insufficient to characterize the functional modular organization of the brain. Here, we demonstrate that augmenting structural brain networks with models of indirect (polysynaptic) communication unveils a modular network architecture that more closely resembles the brain’s established functional systems. We find that diffusion models of polysynaptic connectivity, particularly communicability, narrow the gap between the modular organization of structural and functional brain networks by 20–60%, whereas routing models based on single efficient paths do not improve mesoscopic structure-function correspondence. This suggests that functional modules emerge from the constraints imposed by local network structure that facilitates diffusive neural communication. Our work establishes the importance of modeling polysynaptic communication to understand the structural basis of functional systems.
41
Citation2
0
Save
Load More