JL
Justin Lim
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
186
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases

Matthew Yarnall et al.Nov 24, 2022
+25
C
E
M
Programmable genome integration of large, diverse DNA cargo without DNA repair of exposed DNA double-strand breaks remains an unsolved challenge in genome editing. We present programmable addition via site-specific targeting elements (PASTE), which uses a CRISPR–Cas9 nickase fused to both a reverse transcriptase and serine integrase for targeted genomic recruitment and integration of desired payloads. We demonstrate integration of sequences as large as ~36 kilobases at multiple genomic loci across three human cell lines, primary T cells and non-dividing primary human hepatocytes. To augment PASTE, we discovered 25,614 serine integrases and cognate attachment sites from metagenomes and engineered orthologs with higher activity and shorter recognition sequences for efficient programmable integration. PASTE has editing efficiencies similar to or exceeding those of homology-directed repair and non-homologous end joining-based methods, with activity in non-dividing cells and in vivo with fewer detectable off-target events. PASTE expands the capabilities of genome editing by allowing large, multiplexed gene insertion without reliance on DNA repair pathways. Large sequences are integrated site specifically into the human genome without double-strand DNA cleavage.
9
Citation152
2
Save
6

Drag-and-drop genome insertion without DNA cleavage with CRISPR-directed integrases

Eleonora Ioannidi et al.Nov 1, 2021
+16
C
M
E
Abstract Programmable and multiplexed genome integration of large, diverse DNA cargo independent of DNA repair remains an unsolved challenge of genome editing. Current gene integration approaches require double-strand breaks that evoke DNA damage responses and rely on repair pathways that are inactive in terminally differentiated cells. Furthermore, CRISPR-based approaches that bypass double stranded breaks, such as Prime editing, are limited to modification or insertion of short sequences. We present Programmable Addition via Site-specific Targeting Elements, or PASTE, which achieves efficient and versatile gene integration at diverse loci by directing insertion with a CRISPR-Cas9 nickase fused to both a reverse transcriptase and serine integrase. Without generating double stranded breaks, we demonstrate integration of sequences as large as ∼36 kb with rates between 10-50% at multiple genomic loci across three human cell lines, primary T cells, and quiescent non-dividing primary human hepatocytes. To further improve PASTE, we discover thousands of novel serine integrases and cognate attachment sites from metagenomes and engineer active orthologs for high-efficiency integration using PASTE. We apply PASTE to fluorescent tagging of proteins, integration of therapeutically relevant genes, and production and secretion of transgenes. Leveraging the orthogonality of serine integrases, we engineer PASTE for multiplexed gene integration, simultaneously integrating three different genes at three genomic loci. PASTE has editing efficiencies comparable to or better than those of homology directed repair or non-homologous end joining based integration, with activity in non-dividing cells and fewer detectable off-target events. For therapeutic applications, PASTE can be delivered as mRNA with synthetically modified guides to programmably direct insertion of DNA templates carried by AAV or adenoviral vectors. PASTE expands the capabilities of genome editing via drag-and-drop gene integration, offering a platform with wide applicability for research, cell engineering, and gene therapy. One Sentence Summary A new technology combining CRISPR-mediated genome editing and site-specific integrases enables efficient programmable gene integration at any targeted genomic locus without double-strand DNA breaks, leading to broad applications in basic science research, cell engineering, and gene therapy.
6
Citation32
0
Save
40

Genoppi: an open-source software for robust and standardized integration of proteomic and genetic data

Greta Pintacuda et al.May 5, 2020
+7
Y
F
G
Abstract Combining genetic and cell-type-specific proteomic datasets can lead to new biological insights and therapeutic hypotheses, but a technical and statistical framework for such analyses is lacking. Here, we present an open-source computational tool called Genoppi that enables robust, standardized, and intuitive integration of quantitative proteomic results with genetic data. We used Genoppi to analyze sixteen cell-type-specific protein interaction datasets of four proteins (TDP-43, MDM2, PTEN, and BCL2) involved in cancer and neurological disease. Through systematic quality control of the data and integration with published protein interactions, we show a general pattern of both cell-type-independent and cell-type-specific interactions across three cancer and one human iPSC-derived neuronal type. Furthermore, through the integration of proteomic and genetic datasets in Genoppi, our results suggest that the neuron-specific interactions of these proteins are mediating their genetic involvement in neurodevelopmental and neurodegenerative diseases. Importantly, our analyses indicate that human iPSC-derived neurons are a relevant model system for studying the involvement of TDP-43 and BCL2 in amyotrophic lateral sclerosis.
40
Citation2
0
Save
0

Genoppi: a web application for interactive integration of experimental proteomics results with genetic datasets

April Kim et al.Mar 9, 2017
K
J
E
A
Abstract Summary Integrating protein-protein interaction experiments and genetic datasets can lead to new insight into the cellular processes implicated in diseases, but this integration is technically challenging. Here, we present Genoppi, a web application that integrates quantitative interaction proteomics data and results from genome-wide association studies or exome sequencing projects, to highlight biological relationships that might otherwise be difficult to discern. Written in R, Python and Bash script, Genoppi is a user-friendly framework easily deployed across Mac OS and Linux distributions. Availability Genoppi is open source and available at https://github.com/lagelab/Genoppi Contact aprilkim@broadinstitute.org and lage.kasper@mgh.harvard.edu
1

Programmable RNA-guided endonucleases are widespread in eukaryotes and their viruses

Kaiyi Jiang et al.Jun 14, 2023
+6
A
M
K
Abstract TnpB proteins are RNA-guided nucleases that are broadly associated with IS200/605 family transposons in prokaryotes. TnpB homologs, named Fanzors, have been detected in genomes of some eukaryotes and large viruses, but their activity and functions in eukaryotes remain unknown. We searched genomes of diverse eukaryotes and their viruses for TnpB homologs and identified numerous putative RNA-guided nucleases that are often associated with various transposases, suggesting they are encoded in mobile genetic elements. Reconstruction of the evolution of these nucleases, which we rename Horizontally-transferred Eukaryotic RNA-guided Mobile Element Systems (HERMES), revealed multiple acquisitions of TnpBs by eukaryotes and subsequent diversification. In their adaptation and spread in eukaryotes, HERMES proteins acquired nuclear localization signals, and genes captured introns, indicating extensive, long term adaptation to functioning in eukaryotic cells. Biochemical and cellular evidence show that HERMES employ non-coding RNAs encoded adjacent to the nuclease for RNA-guided cleavage of double-stranded DNA. HERMES nucleases contain a re-arranged catalytic site of the RuvC domain, similar to a distinct subset of TnpBs, and lack collateral cleavage activity. We demonstrate that HERMES can be harnessed for genome editing in human cells, highlighting the potential of these widespread eukaryotic RNA-guided nucleases for biotechnology applications.