AD
Alberdina Dijk
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
4,145
h-index:
27
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes

A. Potgieter et al.May 18, 2009
This paper reports significant improvements in the efficacy of sequence-independent amplification and quality of sequencing of viruses with segmented double-stranded RNA (dsRNA) genomes. We demonstrate that most remaining bottlenecks in dsRNA virus genome characterization have now been eliminated. Both the amplification and sequencing technologies used require no previous sequence knowledge of the viral dsRNA, there is no longer a need to separate genome segments or amplicons and the sequence-determined bias observed in cloning has been overcome. Combining very efficient genome amplification with pyrophosphate-based 454 (GS20/FLX) sequencing enabled sequencing of complete segmented dsRNA genomes and accelerated the sequence analysis of the amplified viral genomes. We report the complete consensus sequence of seven viruses from four different dsRNA virus groups, which include the first complete sequence of the genome of equine encephalosis virus (EEV), the first complete sequence of an African horsesickness virus (AHSV) genome determined directly from a blood sample and a complete human rotavirus genome determined from faeces. We also present the first comparison between the complete consensus sequence of a virulent and an attenuated strain of AHSV1. Ultra-deep sequencing (>400-fold coverage) of the AHSV1 reference and attenuated strains revealed different ratios of reassortants in the reference strain and allowed quasispecies detection in the plaque-purified attenuated strain of AHSV1. This approach amounts to a paradigm shift in dsRNA virus research, since it is sensitive and specific enough for comprehensive investigations of the evolution and genetic diversity in dsRNA virus populations.
0
Citation268
0
Save
0

Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain

J.S. Herbert et al.Sep 25, 2024
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.