OF
Oleksandr Frei
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(61% Open Access)
Cited by:
2,853
h-index:
34
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping genomic loci implicates genes and synaptic biology in schizophrenia

Vassily Trubetskoy et al.Apr 8, 2022
+99
R
K
V
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.
0
Citation1,385
0
Save
0

A global overview of pleiotropy and genetic architecture in complex traits

Kyoko Watanabe et al.Aug 19, 2019
+7
O
S
K
After a decade of genome-wide association studies (GWASs), fundamental questions in human genetics, such as the extent of pleiotropy across the genome and variation in genetic architecture across traits, are still unanswered. The current availability of hundreds of GWASs provides a unique opportunity to address these questions. We systematically analyzed 4,155 publicly available GWASs. For a subset of well-powered GWASs on 558 traits, we provide an extensive overview of pleiotropy and genetic architecture. We show that trait-associated loci cover more than half of the genome, and 90% of these overlap with loci from multiple traits. We find that potential causal variants are enriched in coding and flanking regions, as well as in regulatory elements, and show variation in polygenicity and discoverability of traits. Our results provide insights into how genetic variation contributes to trait variation. All GWAS results can be queried and visualized at the GWAS ATLAS resource ( https://atlas.ctglab.nl ).
0
Citation947
0
Save
0

Common brain disorders are associated with heritable patterns of apparent aging of the brain

Tobias Kaufmann et al.Sep 24, 2019
+81
C
S
T
Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
0
Citation441
0
Save
6

The Norwegian Mother, Father, and Child cohort study (MoBa) genotyping data resource: MoBaPsychGen pipeline v.1

Elizabeth Corfield et al.Jun 26, 2022
+24
O
N
E
Abstract Background The Norwegian Mother, Father, and Child Cohort Study (MoBa) is a population-based pregnancy cohort, which includes approximately 114,500 children, 95,200 mothers, and 75,200 fathers. Genotyping of MoBa has been conducted through multiple research projects, spanning several years; using varying selection criteria, genotyping arrays, and genotyping centres. MoBa contains numerous interrelated families, which necessitated the implementation of a family-based quality control (QC) pipeline that verifies and accounts for diverse types of relatedness. Methods The MoBaPsychGen pipeline, comprising pre-imputation QC, phasing, imputation, and post-imputation QC, was developed based on current best-practice protocols and implemented to account for the complex structure of the MoBa genotype data. The pipeline includes QC on both single nucleotide polymorphism (SNP) and individual level. Phasing and imputation were performed using the publicly available Haplotype Reference Consortium release 1.1 panel as a reference. Information from the Medical Birth Registry of Norway and MoBa questionnaires were used to identify biological sex, year of birth, reported parent-offspring (PO) relationships, and multiple births (only available in the offspring generation). Results In total, 207,569 unique individuals (90% of the unique individuals included in the study) and 6,981,748 SNPs passed the MoBaPsychGen pipeline. The relatedness checks performed throughout the pipeline allowed identification of within-generation and across-generation first-degree, second-degree, and third-degree relatives. The individuals passing post-imputation QC comprised 64,471 families ranging in size from singletons to 84 unique individuals (singletons are included as families as other family members may not have been genotyped, imputed, or passed post-imputation QC). The relationships identified include 287 monozygotic twin pairs, 22,884 full siblings, 117,004 PO pairs, 23,299 second-degree relative pairs, and 10,828 third-degree relative pairs. Discussion MoBa contains a highly complex relatedness structure, with a variety of family structures including singletons, PO duos, full (mother, father, child) PO trios, nuclear families, blended families, and extended families. The availability of robustly quality-controlled genetic data for such a large cohort with a unique extended family structure will allow many novel research questions to be addressed. Furthermore, the MoBaPsychGen pipeline has potential utility in similar cohorts.
6
Citation23
0
Save
0

Beyond SNP Heritability: Polygenicity and Discoverability of Phenotypes Estimated with a Univariate Gaussian Mixture Model

Dominic Holland et al.May 24, 2017
+7
R
O
D
Abstract Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities ranging from ≃ 2 × 10 −5 to ≃ 4 × 10 −3 , with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics. Author Summary There are ~10 million common variants in the genome of humans with European ancestry. For any particular phenotype a number of these variants will have some causal effect. It is of great interest to be able to quantify the number of these causal variants and the strength of their effect on the phenotype. Genome wide association studies (GWAS) produce very noisy summary statistics for the association between subsets of common variants and phenotypes. For any phenotype, these statistics collectively are difficult to interpret, but buried within them is the true landscape of causal effects. In this work, we posit a probability distribution for the causal effects, and assess its validity using simulations. Using a detailed reference panel of ~11 million common variants – among which only a small fraction are likely to be causal, but allowing for non-causal variants to show an association with the phenotype due to correlation with causal variants – we implement an exact procedure for estimating the number of causal variants and their mean strength of association with the phenotype. We find that, across different phenotypes, both these quantities – whose product allows for lower bound estimates of heritability – vary by orders of magnitude.
0
Citation12
0
Save
0

Beyond SNP Heritability: Polygenicity and Discoverability of Phenotypes Estimated with a Univariate Gaussian Mixture Model

Dominic Holland et al.Dec 17, 2018
+7
R
O
D
Abstract Of signal interest in the genetics of human traits is estimating their polygenicity (the proportion of causally associated single nucleotide polymorphisms (SNPs)) and the discoverability (or effect size variance) of the causal SNPs. Narrow-sense heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary statistics for SNPs with minor allele frequency >1%. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities ranging from ≃ 2 × 10 −5 to ≃ 4 × 10 −3 , with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation.
0
Citation9
0
Save
1

Multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology

Alexey Shadrin et al.Oct 23, 2020
+18
D
T
A
Abstract Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained by the genetic variants discovered so far. Here we exploit the distributed nature of genetic effects across the brain and apply the Multivariate Omnibus Statistical Test (MOSTest) to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology. This reflects an approximate 10-fold increase compared to the commonly applied univariate GWAS methods. Power analysis indicates that applying MOSTest to vertex-wise structural MRI data triples the effective sample size compared to conventional univariate GWAS approaches. Functional follow up including gene-based analyses implicate 10% of all protein-coding genes and point towards pathways involved in neurogenesis and cell differentiation.
1
Citation9
0
Save
28

FEMA: Fast and efficient mixed-effects algorithm for large sample whole-brain imaging data

Pravesh Parekh et al.Oct 28, 2021
+14
O
C
P
Abstract The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME, however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive Development SM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/ .
9

Generalization of Cortical MOSTest Genome-Wide Associations Within and Across Samples

Robert Loughnan et al.Apr 24, 2021
+9
O
A
R
Abstract Genome-Wide Association studies have typically been limited to single phenotypes, given that high dimensional phenotypes incur a large multiple comparisons burden: ~1 million tests across the genome times the number of phenotypes. Recent work demonstrates that a Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, MOSTest has resulted in a drastic improvement in power to discover loci when compared to established approaches (min-P). One question that arises is how well these discovered loci replicate in independent data. Here we perform 10 times cross validation within 35,644 individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth (>1,000 dimensionality for each). By deploying a replication method that aggregates discovered effects distributed across multiple phenotypes, termed PolyVertex Score (PVS), we demonstrate a higher replication yield and comparable replication rate of discovered loci for MOSTest (# replicated loci: 348-845, replication rate: 94-95%) in independent data when compared with the established min-P approach (# replicated loci: 31-68, replication rate: 65-80%). An out-of-sample replication of discovered loci was conducted with a sample of 8,336 individuals from the Adolescent Brain Cognitive Development ® (ABCD) study, who are on average 50 years younger than UK Biobank individuals. We observe a higher replication yield and comparable replication rate of MOSTest compared to min-P. This finding underscores the importance of using well-powered multivariate techniques for both discovery and replication of high dimensional phenotypes in Genome-Wide Association studies.
9
Citation7
0
Save
0

Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation

Oleksandr Frei et al.Dec 27, 2017
+9
O
D
O
ABSTRACT Accumulating evidence from genome wide association studies (GWAS) suggests an abundance of shared genetic influences among complex human traits and disorders, such as mental disorders. While current cross-trait analytical methods focus on genetic correlation between traits, we developed a novel statistical tool (MiXeR), which quantifies polygenic overlap independent of genetic correlation, using summary statistics from GWAS. MiXeR results can be presented as a Venn diagram of unique and shared polygenic components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR estimates that more than 9K variants causally influence schizophrenia, 7K influence bipolar disorder, and out of those variants 6.9K are shared between these two disorders, which have high genetic correlation. Further, MiXeR uncovers extensive polygenic overlap between schizophrenia and educational attainment. Despite a genetic correlation close to zero, these traits share more than 9K causal variants, while 3K additional variants only influence educational attainment. By considering the polygenicity, heritability and discoverability of complex phenotypes, MiXeR provides a more complete quantification of shared genetic architecture than offered by other available tools.
0
Citation3
0
Save
Load More