DB
Debashish Bhattacharya
Author with expertise in Global Diversity of Microbial Eukaryotes and Their Evolution
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(63% Open Access)
Cited by:
4,145
h-index:
81
/
i10-index:
268
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Molecular Timeline for the Origin of Photosynthetic Eukaryotes

Hwan Yoon et al.Mar 4, 2004
The appearance of photosynthetic eukaryotes (algae and plants) dramatically altered the Earth's ecosystem, making possible all vertebrate life on land, including humans. Dating algal origin is, however, frustrated by a meager fossil record. We generated a plastid multi-gene phylogeny with Bayesian inference and then used maximum likelihood molecular clock methods to estimate algal divergence times. The plastid tree was used as a surrogate for algal host evolution because of recent phylogenetic evidence supporting the vertical ancestry of the plastid in the red, green, and glaucophyte algae. Nodes in the plastid tree were constrained with six reliable fossil dates and a maximum age of 3,500 MYA based on the earliest known eubacterial fossil. Our analyses support an ancient (late Paleoproterozoic) origin of photosynthetic eukaryotes with the primary endosymbiosis that gave rise to the first alga having occurred after the split of the Plantae (i.e., red, green, and glaucophyte algae plus land plants) from the opisthokonts sometime before 1,558 MYA. The split of the red and green algae is calculated to have occurred about 1,500 MYA, and the putative single red algal secondary endosymbiosis that gave rise to the plastid in the cryptophyte, haptophyte, and stramenopile algae (chromists) occurred about 1,300 MYA. These dates, which are consistent with fossil evidence for putative marine algae (i.e., acritarchs) from the early Mesoproterozoic (1,500 MYA) and with a major eukaryotic diversification in the very late Mesoproterozoic and Neoproterozoic, provide a molecular timeline for understanding algal evolution.
0
Citation884
0
Save
0

Draft Assembly of the Symbiodinium minutum Nuclear Genome Reveals Dinoflagellate Gene Structure

Eiichi Shoguchi et al.Jul 11, 2013
Dinoflagellates are known for their capacity to form harmful blooms (e.g., "red tides") and as symbiotic, photosynthetic partners for corals. These unicellular eukaryotes have permanently condensed, liquid-crystalline chromosomes and immense nuclear genome sizes, often several times the size of the human genome. Here we describe the first draft assembly of a dinoflagellate nuclear genome, providing insights into its genome organization and gene inventory.Sequencing reads from Symbiodinium minutum were assembled into 616 Mbp gene-rich DNA regions that represented roughly half of the estimated 1,500 Mbp genome of this species. The assembly encoded ∼42,000 protein-coding genes, consistent with previous dinoflagellate gene number estimates using transcriptomic data. The Symbiodinium genome contains duplicated genes for regulator of chromosome condensation proteins, nearly one-third of which have eukaryotic orthologs, whereas the remainder have most likely been acquired through bacterial horizontal gene transfers. Symbiodinium genes are enriched in spliceosomal introns (mean = 18.6 introns/gene). Donor and acceptor splice sites are unique, with 5' sites utilizing not only GT but also GC and GA, whereas at 3' sites, a conserved G is present after AG. All spliceosomal snRNA genes (U1-U6) are clustered in the genome. Surprisingly, the Symbiodinium genome displays unidirectionally aligned genes throughout the genome, forming a cluster-like gene arrangement.We show here that a dinoflagellate genome exhibits unique and divergent characteristics when compared to those of other eukaryotes. Our data elucidate the organization and gene inventory of dinoflagellates and lay the foundation for future studies of this remarkable group of eukaryotes.
0
Citation497
0
Save
0

Dinoflagellates: a remarkable evolutionary experiment

Jeremiah Hackett et al.Oct 1, 2004
In this paper, we focus on dinoflagellate ecology, toxin production, fossil record, and a molecular phylogenetic analysis of hosts and plastids. Of ecological interest are the swimming and feeding behavior, bioluminescence, and symbioses of dinoflagellates with corals. The many varieties of dinoflagellate toxins, their biological effects, and current knowledge of their origin are discussed. Knowledge of dinoflagellate evolution is aided by a rich fossil record that can be used to document their emergence and diversification. However, recent biogeochemical studies indicate that dinoflagellates may be much older than previously believed. A remarkable feature of dinoflagellates is their unique genome structure and gene regulation. The nuclear genomes of these algae are of enormous size, lack nucleosomes, and have permanently condensed chromosomes. This chapter reviews the current knowledge of gene regulation and transcription in dinoflagellates with regard to the unique aspects of the nuclear genome. Previous work shows the plastid genome of typical dinoflagellates to have been reduced to single-gene minicircles that encode only a small number of proteins. Recent studies have demonstrated that the majority of the plastid genome has been transferred to the nucleus, which makes the dinoflagellates the only eukaryotes to encode the majority of typical plastid genes in the nucleus. The evolution of the dinoflagellate plastid and the implications of these results for understanding organellar genome evolution are discussed.
0
Citation396
0
Save
0

A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis

Hwan Yoon et al.Aug 9, 2002
The most widely distributed dinoflagellate plastid contains chlorophyll c(2) and peridinin as the major carotenoid. A second plastid type, found in taxa such as Karlodinium micrum and Karenia spp., contains chlorophylls c(1) + c(2) and 19'-hexanoyloxy-fucoxanthin and/or 19'-butanoyloxy-fucoxanthin but lacks peridinin. Because the presence of chlorophylls c(1) + c(2) and fucoxanthin is typical of haptophyte algae, the second plastid type is believed to have originated from a haptophyte tertiary endosymbiosis in an ancestral peridinin-containing dinoflagellate. This hypothesis has, however, never been thoroughly tested in plastid trees that contain genes from both peridinin- and fucoxanthin-containing dinoflagellates. To address this issue, we sequenced the plastid-encoded psaA (photosystem I P700 chlorophyll a apoprotein A1), psbA (photosystem II reaction center protein D1), and "Form I" rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) genes from various red and dinoflagellate algae. The combined psaA + psbA tree shows significant support for the monophyly of peridinin- and fucoxanthin-containing dinoflagellates as sister to the haptophytes. The monophyly with haptophytes is robustly recovered in the psbA phylogeny in which we increased the sampling of dinoflagellates to 14 species. As expected from previous analyses, the fucoxanthin-containing dinoflagellates formed a well-supported sister group with haptophytes in the rbcL tree. Based on these analyses, we postulate that the plastid of peridinin- and fucoxanthin-containing dinoflagellates originated from a haptophyte tertiary endosymbiosis that occurred before the split of these lineages. Our findings imply that the presence of chlorophylls c(1) + c(2) and fucoxanthin, and the Form I rbcL gene are in fact the primitive (not derived, as widely believed) condition in dinoflagellates.
0
Paper
Citation394
0
Save
41

Whole-genome duplication in an algal symbiont bolsters coral heat tolerance

Katherine Dougan et al.Apr 11, 2022
Abstract The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress 1,2 . As an endosymbiont, D. trenchii is generally expected to have a reduced genome compared to its free-living relatives, due in part to the lack of selective pressure for maintaining redundant gene functions in a stable intracellular environment within the host 3 . However, D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers 4 suggests that this species has undergone whole-genome duplication (WGD). Here we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions. We assess how the competing free-living versus endosymbiotic lifestyles of D. trenchii have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced thermotolerance of corals hosting these symbionts. We find that lifestyle is the driver of post-WGD evolution in D. trenchii , with the free-living phase being most important, followed by endosymbiosis. Adaptations to both lifestyles collectively result in increased cellular fitness for D. trenchii , which provides enhanced thermal stress protection to the host coral. Beyond corals, this polyploid alga is a valuable model for understanding how genome-wide selective forces act to balance the often, divergent constraints imposed by competing lifestyles.
41
Citation21
0
Save
Load More