WZ
Wenjun Zeng
Author with expertise in Human Action Recognition and Pose Estimation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(71% Open Access)
Cited by:
5,979
h-index:
61
/
i10-index:
189
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Image-adaptive watermarking using visual models

C. Podilchuk et al.May 1, 1998
The huge success of the Internet allows for the transmission, wide distribution, and access of electronic data in an effortless manner. Content providers are faced with the challenge of how to protect their electronic data. This problem has generated a flurry of research activity in the area of digital watermarking of electronic content for copyright protection. The challenge here is to introduce a digital watermark that does not alter the perceived quality of the electronic content, while being extremely robust to attack. For instance, in the case of image data, editing the picture or illegal tampering should not destroy or transform the watermark into another valid signature. Equally important, the watermark should not alter the perceived visual quality of the image. From a signal processing perspective, the two basic requirements for an effective watermarking scheme, robustness and transparency, conflict with each other. We propose two watermarking techniques for digital images that are based on utilizing visual models which have been developed in the context of image compression. Specifically, we propose watermarking schemes where visual models are used to determine image dependent upper bounds on watermark insertion. This allows us to provide the maximum strength transparent watermark which, in turn, is extremely robust to common image processing and editing such as JPEG compression, rescaling, and cropping. We propose perceptually based watermarking schemes in two frameworks: the block-based discrete cosine transform and multiresolution wavelet framework and discuss the merits of each one. Our schemes are shown to provide very good results both in terms of image transparency and robustness.
0

View Adaptive Neural Networks for High Performance Skeleton-Based Human Action Recognition

Pengfei Zhang et al.Jan 31, 2019
Skeleton-based human action recognition has recently attracted increasing attention thanks to the accessibility and the popularity of 3D skeleton data. One of the key challenges in action recognition lies in the large variations of action representations when they are captured from different viewpoints. In order to alleviate the effects of view variations, this paper introduces a novel view adaptation scheme, which automatically determines the virtual observation viewpoints over the course of an action in a learning based data driven manner. Instead of re-positioning the skeletons using a fixed human-defined prior criterion, we design two view adaptive neural networks, i.e., VA-RNN and VA-CNN, which are respectively built based on the recurrent neural network (RNN) with the Long Short-term Memory (LSTM) and the convolutional neural network (CNN). For each network, a novel view adaptation module learns and determines the most suitable observation viewpoints, and transforms the skeletons to those viewpoints for the end-to-end recognition with a main classification network. Ablation studies find that the proposed view adaptive models are capable of transforming the skeletons of various views to much more consistent virtual viewpoints. Therefore, the models largely eliminate the influence of the viewpoints, enabling the networks to focus on the learning of action-specific features and thus resulting in superior performance. In addition, we design a two-stream scheme (referred to as VA-fusion) that fuses the scores of the two networks to provide the final prediction, obtaining enhanced performance. Moreover, random rotation of skeleton sequences is employed to improve the robustness of view adaptation models and alleviate overfitting during training. Extensive experimental evaluations on five challenging benchmarks demonstrate the effectiveness of the proposed view-adaptive networks and superior performance over state-of-the-art approaches.
0

Generalizing to Unseen Domains: A Survey on Domain Generalization

Jindong Wang et al.Jan 1, 2022
Machine learning systems generally assume that the training and testing distributions are the same. To this end, a key requirement is to develop models that can generalize to unseen distributions. Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increasing interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain generalization for years. This paper presents the first review of recent advances in this area. First, we provide a formal definition of domain generalization and discuss several related fields. We then thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. We categorize recent algorithms into three classes: data manipulation, representation learning, and learning strategy, and present several popular algorithms in detail for each category. Third, we introduce the commonly used datasets, applications, and our open-sourced codebase for fair evaluation. Finally, we summarize existing literature and present some potential research topics for the future.
1

CNSA: a data repository for archiving omics data

Xueqin Guo et al.Jan 1, 2020
Abstract With the application and development of high-throughput sequencing technology in life and health sciences, massive multi-omics data brings the problem of efficient management and utilization. Database development and biocuration are the prerequisites for the reuse of these big data. Here, relying on China National GeneBank (CNGB), we present CNGB Sequence Archive (CNSA) for archiving omics data, including raw sequencing data and its further analyzed results which are organized into six objects, namely Project, Sample, Experiment, Run, Assembly and Variation at present. Moreover, CNSA has created a correlation model of living samples, sample information and analytical data on some projects. Both living samples and analytical data are directly correlated with the sample information. From either one, information or data of the other two can be obtained, so that all data can be traced throughout the life cycle from the living sample to the sample information to the analytical data. Complying with the data standards commonly used in the life sciences, CNSA is committed to building a comprehensive and curated data repository for storing, managing and sharing of omics data. We will continue to improve the data standards and provide free access to open-data resources for worldwide scientific communities to support academic research and the bio-industry. Database URL: https://db.cngb.org/cnsa/.
0

Style Normalization and Restitution for Generalizable Person Re-Identification

Xin Jin et al.Jun 1, 2020
Existing fully-supervised person re-identification (ReID) methods usually suffer from poor generalization capability caused by domain gaps. The key to solving this problem lies in filtering out identity-irrelevant interference and learning domain-invariant person representations. In this paper, we aim to design a generalizable person ReID framework which trains a model on source domains yet is able to generalize/perform well on target domains. To achieve this goal, we propose a simple yet effective Style Normalization and Restitution (SNR) module. Specifically, we filter out style variations (e.g., illumination, color contrast) by Instance Normalization (IN). However, such a process inevitably removes discriminative information. We propose to distill identity-relevant feature from the removed information and restitute it to the network to ensure high discrimination. For better disentanglement, we enforce a dual causal loss constraint in SNR to encourage the separation of identity-relevant features and identity-irrelevant features. Extensive experiments demonstrate the strong generalization capability of our framework. Our models empowered by the SNR modules significantly outperform the state-of-the-art domain generalization approaches on multiple widely-used person ReID benchmarks, and also show superiority on unsupervised domain adaptation.
0

MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition

Yizhou Zhou et al.Jun 1, 2018
Human actions in videos are three-dimensional (3D) signals. Recent attempts use 3D convolutional neural networks (CNNs) to explore spatio-temporal information for human action recognition. Though promising, 3D CNNs have not achieved high performance on this task with respect to their well-established two-dimensional (2D) counterparts for visual recognition in still images. We argue that the high training complexity of spatio-temporal fusion and the huge memory cost of 3D convolution hinder current 3D CNNs, which stack 3D convolutions layer by layer, by outputting deeper feature maps that are crucial for high-level tasks. We thus propose a Mixed Convolutional Tube (MiCT) that integrates 2D CNNs with the 3D convolution module to generate deeper and more informative feature maps, while reducing training complexity in each round of spatio-temporal fusion. A new end-to-end trainable deep 3D network, MiCT-Net, is also proposed based on the MiCT to better explore spatio-temporal information in human actions. Evaluations on three well-known benchmark datasets (UCF101, Sport-1M and HMDB-51) show that the proposed MiCT-Net significantly outperforms the original 3D CNNs. Compared with state-of-the-art approaches for action recognition on UCF101 and HMDB51, our MiCT-Net yields the best performance.
0
Citation237
0
Save
Load More