TW
Tilmann Weber
Author with expertise in Natural Products as Sources of New Drugs
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
36
(86% Open Access)
Cited by:
11,429
h-index:
49
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline

Kai Blin et al.Apr 17, 2019
Abstract Secondary metabolites produced by bacteria and fungi are an important source of antimicrobials and other bioactive compounds. In recent years, genome mining has seen broad applications in identifying and characterizing new compounds as well as in metabolic engineering. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ (https://antismash.secondarymetabolites.org) has assisted researchers in this, both as a web server and a standalone tool. It has established itself as the most widely used tool for identifying and analysing biosynthetic gene clusters (BGCs) in bacterial and fungal genome sequences. Here, we present an entirely redesigned and extended version 5 of antiSMASH. antiSMASH 5 adds detection rules for clusters encoding the biosynthesis of acyl-amino acids, β-lactones, fungal RiPPs, RaS-RiPPs, polybrominated diphenyl ethers, C-nucleosides, PPY-like ketones and lipolanthines. For type II polyketide synthase-encoding gene clusters, antiSMASH 5 now offers more detailed predictions. The HTML output visualization has been redesigned to improve the navigation and visual representation of annotations. We have again improved the runtime of analysis steps, making it possible to deliver comprehensive annotations for bacterial genomes within a few minutes. A new output file in the standard JavaScript object notation (JSON) format is aimed at downstream tools that process antiSMASH results programmatically.
0
Citation2,609
0
Save
0

antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

Tilmann Weber et al.May 6, 2015
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.
0
Citation1,799
0
Save
0

antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

Marnix Medema et al.Jun 14, 2011
Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org .
0
Citation1,719
0
Save
0

antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification

Kai Blin et al.Apr 13, 2017
Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.
0

NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity

Marc Röttig et al.May 9, 2011
The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain's substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.
0

MIBiG 2.0: a repository for biosynthetic gene clusters of known function

Satria Kautsar et al.Oct 1, 2019
Abstract Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/.
0
Citation495
0
Save
0

CRISPR-Cas9 Based Engineering of Actinomycetal Genomes

Yaojun Tong et al.Mar 25, 2015
Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9 were repaired through the error-prone nonhomologous end joining (NHEJ) pathway, resulting in a library of deletions with variable sizes around the targeted sequence. If templates for HDR were provided at the same time, precise deletions of the targeted gene were observed with near 100% frequency. Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes.
0
Citation373
0
Save
0

Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution

Christian Rausch et al.Jan 1, 2007
Non-ribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize a wide range of biologically active natural peptide compounds, of which many are pharmacologically important. Peptide bond formation is catalyzed by the Condensation (C) domain. Various functional subtypes of the C domain exist: An LCL domain catalyzes a peptide bond between two L-amino acids, a DCL domain links an L-amino acid to a growing peptide ending with a D-amino acid, a Starter C domain (first denominated and classified as a separate subtype here) acylates the first amino acid with a β-hydroxy-carboxylic acid (typically a β-hydroxyl fatty acid), and Heterocyclization (Cyc) domains catalyze both peptide bond formation and subsequent cyclization of cysteine, serine or threonine residues. The homologous Epimerization (E) domain flips the chirality of the last amino acid in the growing peptide; Dual E/C domains catalyze both epimerization and condensation. In this paper, we report on the reconstruction of the phylogenetic relationship of NRPS C domain subtypes and analyze in detail the sequence motifs of recently discovered subtypes (Dual E/C, DCL and Starter domains) and their characteristic sequence differences, mutually and in comparison with LCL domains. Based on their phylogeny and the comparison of their sequence motifs, LCL and Starter domains appear to be more closely related to each other than to other subtypes, though pronounced differences in some segments of the protein account for the unequal donor substrates (amino vs. β-hydroxy-carboxylic acid). Furthermore, on the basis of phylogeny and the comparison of sequence motifs, we conclude that Dual E/C and DCL domains share a common ancestor. In the same way, the evolutionary origin of a C domain of unknown function in glycopeptide (GP) NRPSs can be determined to be an LCL domain. In the case of two GP C domains which are most similar to DCL but which have LCL activity, we postulate convergent evolution. We systematize all C domain subtypes including the novel Starter C domain. With our results, it will be easier to decide the subtype of unknown C domains as we provide profile Hidden Markov Models (pHMMs) for the sequence motifs as well as for the entire sequences. The determined specificity conferring positions will be helpful for the mutation of one subtype into another, e.g. turning DCL to LCL, which can be a useful step for obtaining novel products.
Load More