RK
Riki Kawaguchi
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
62
(82% Open Access)
Cited by:
4,286
h-index:
40
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Astrocyte scar formation aids central nervous system axon regeneration

Mark Anderson et al.Mar 29, 2016
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. Sustained delivery of axon-specific growth factors not typically present in spinal cord lesions allows for robust axonal regrowth only if the astrocytic scar is present—a result that questions the prevailing dogma and suggests that astrocytic scarring aids rather than prevents central nervous system axon regeneration post injury. It is widely believed that the astrocytic scars that develop following central nervous system (CNS) injury are a major obstacle to subsequent axonal regrowth. But here Michael Sofroniew and colleagues demonstrate that limiting the formation of the scar actually attenuates axon re-growth. Sustained delivery of axon-specific growth factors not typically present in spinal cord lesions allowed for robust re-growth, but only if the astrocytic scar was present. These results question the prevailing dogma and suggest that astrocyte scarring promotes — rather than prevents — CNS axon regeneration post-injury.
0

Required growth facilitators propel axon regeneration across complete spinal cord injury

Mark Anderson et al.Aug 28, 2018
Transected axons fail to regrow across anatomically complete spinal cord injuries (SCI) in adults. Diverse molecules can partially facilitate or attenuate axon growth during development or after injury1–3, but efficient reversal of this regrowth failure remains elusive4. Here we show that three factors that are essential for axon growth during development but are attenuated or lacking in adults—(i) neuron intrinsic growth capacity2,5–9, (ii) growth-supportive substrate10,11 and (iii) chemoattraction12,13—are all individually required and, in combination, are sufficient to stimulate robust axon regrowth across anatomically complete SCI lesions in adult rodents. We reactivated the growth capacity of mature descending propriospinal neurons with osteopontin, insulin-like growth factor 1 and ciliary-derived neurotrophic factor before SCI14,15; induced growth-supportive substrates with fibroblast growth factor 2 and epidermal growth factor; and chemoattracted propriospinal axons with glial-derived neurotrophic factor16,17 delivered via spatially and temporally controlled release from biomaterial depots18,19, placed sequentially after SCI. We show in both mice and rats that providing these three mechanisms in combination, but not individually, stimulated robust propriospinal axon regrowth through astrocyte scar borders and across lesion cores of non-neural tissue that was over 100-fold greater than controls. Stimulated, supported and chemoattracted propriospinal axons regrew a full spinal segment beyond lesion centres, passed well into spared neural tissue, formed terminal-like contacts exhibiting synaptic markers and conveyed a significant return of electrophysiological conduction capacity across lesions. Thus, overcoming the failure of axon regrowth across anatomically complete SCI lesions after maturity required the combined sequential reinstatement of several developmentally essential mechanisms that facilitate axon growth. These findings identify a mechanism-based biological repair strategy for complete SCI lesions that could be suitable to use with rehabilitation models designed to augment the functional recovery of remodelling circuits. Stimulating the intrinsic growth capacity of neurons and providing growth-supportive substrate and chemoattraction can allow axon regrowth across anatomically complete spinal cord injuries in adult rodents.
0

Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map

Ömer Bayraktar et al.Mar 16, 2020
Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae. A new spatial transcriptomic approach reveals astrocyte heterogeneity across layers of the mammalian cerebral cortex. Astrocytes diversify into superficial-, mid- and deep-layer subtypes distinct from neuronal laminae, yet instructed by neuronal cues.
0
Citation357
0
Save
0

Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD

Michael Gandal et al.Nov 2, 2022
Abstract Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations 1–3 . In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural–immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex 1,2,4–6 . However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.
0
Citation85
-1
Save
40

Single-soma transcriptomics of tangle-bearing neurons in Alzheimer’s disease reveals the signatures of tau-associated synaptic dysfunction

Marcos Otero-García et al.May 13, 2020
Abstract Aggregation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is closely associated with neuronal death and cognitive decline in Alzheimer’s disease (AD). To define the signatures that distinguish between aggregation-prone and resistant cell states in AD, we developed a FACS-based method for the high-throughput isolation and transcriptome profiling of individual cells with cytoplasmic aggregates and profiled 63,110 somas from human AD brains. By comparing NFT-bearing and NFT-free somas within and across neuronal subtypes, we identified the cell-type-specific and shared states. NFT-bearing neurons shared a marked upregulation of genes associated with synaptic transmission, including a core set of 63 genes enriched for synaptic vesicle cycle and transsynaptic signaling, whereas glucose metabolism and oxidative phosphorylation changes were highly neuronal-subtype-specific. Apoptosis was modestly enriched in NFT-bearing neurons despite the strong link between tau and cell death. Our datasets provide a resource for investigating tau-mediated neurodegeneration and a platform for biomarker and drug target discovery.
40
Citation31
0
Save
Load More