RY
Rui Yin
Author with expertise in Therapeutic Antibodies: Development, Engineering, and Applications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
262
h-index:
17
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BenchmarkingAlphaFoldfor protein complex modeling reveals accuracy determinants

Rui Yin et al.Jul 13, 2022
High-resolution experimental structural determination of protein-protein interactions has led to valuable mechanistic insights, yet due to the massive number of interactions and experimental limitations there is a need for computational methods that can accurately model their structures. Here we explore the use of the recently developed deep learning method, AlphaFold, to predict structures of protein complexes from sequence. With a benchmark of 152 diverse heterodimeric protein complexes, multiple implementations and parameters of AlphaFold were tested for accuracy. Remarkably, many cases (43%) had near-native models (medium or high critical assessment of predicted interactions accuracy) generated as top-ranked predictions by AlphaFold, greatly surpassing the performance of unbound protein-protein docking (9% success rate for near-native top-ranked models), however AlphaFold modeling of antibody-antigen complexes within our set was unsuccessful. We identified sequence and structural features associated with lack of AlphaFold success, and we also investigated the impact of multiple sequence alignment input. Benchmarking of a multimer-optimized version of AlphaFold (AlphaFold-Multimer) with a set of recently released antibody-antigen structures confirmed a low rate of success for antibody-antigen complexes (11% success), and we found that T cell receptor-antigen complexes are likewise not accurately modeled by that algorithm, showing that adaptive immune recognition poses a challenge for the current AlphaFold algorithm and model. Overall, our study demonstrates that end-to-end deep learning can accurately model many transient protein complexes, and highlights areas of improvement for future developments to reliably model any protein-protein interaction of interest.
33

Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants

Rui Yin et al.Oct 24, 2021
Abstract High resolution experimental structural determination of protein-protein interactions has led to valuable mechanistic insights, yet due to the massive number of interactions and experimental limitations there is a need for computational methods that can accurately model their structures. Here we explore the use of the recently developed deep learning method, AlphaFold, to predict structures of protein complexes from sequence. With a benchmark of 152 diverse heterodimeric protein complexes, multiple implementations and parameters of AlphaFold were tested for accuracy. Remarkably, many cases had highly accurate models generated as top-ranked predictions, greatly surpassing the performance of unbound protein-protein docking, whereas antibody-antigen docking was largely unsuccessful. While AlphaFold-generated accuracy predictions were able to discriminate near-native models, previously developed scoring protocols improved performance. Our study demonstrates that end-to-end deep learning can accurately model transient protein complexes, and identifies areas for improvement to guide future developments to reliably model any protein-protein interaction of interest.
0

AlphaFold and Docking Approaches for Antibody–Antigen and Other Targets: Insights From CAPRI Rounds 47–55

Ragul Gowthaman et al.Jan 20, 2025
ABSTRACT Accurate modeling of the structures of protein–protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein–protein and protein–DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near‐native models for an antibody–peptide target, and a highly accurate (but low ranked) model for an antibody–MHC complex. These results underscore the utility of AlphaFold‐based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.
59

Evaluation of AlphaFold Antibody-Antigen Modeling with Implications for Improving Predictive Accuracy

Rui Yin et al.Jul 5, 2023
Abstract High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold’s antibody-antigen modeling performance on 429 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. We show the importance of bound-like component modeling in complex assembly accuracy, and that the current version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training may further improve its performance.
31

CoV3D: A database and resource for high resolution coronavirus protein structures

Ragul Gowthaman et al.May 13, 2020
Abstract SARS-CoV-2, the etiologic agent behind COVID-19, exemplifies the general threat to global health posed by coronaviruses. The urgent need for effective vaccines and therapies is leading to a rapid rise in the number of high resolution structures of SARS-CoV-2 proteins that collectively reveal a map of virus vulnerabilities. To assist structure-based design of vaccines and therapeutics against SARS-CoV-2 and other coronaviruses, we have developed CoV3D, a database and resource for coronavirus protein structures, which is updated on a weekly basis. CoV3D provides users with comprehensive sets of structures of coronavirus proteins and their complexes with antibodies, receptors, and small molecules. Integrated molecular viewers allow users to visualize structures of the spike glycoprotein, which is the major target of neutralizing antibodies and vaccine design efforts, as well as sets of spike-antibody complexes, spike sequence variability, and known polymorphisms. In order to aid structure-based design and analysis of the spike glycoprotein, CoV3D permits visualization and download of spike structures with modeled N-glycosylation at known glycan sites, and contains structure-based classification of spike conformations, generated by unsupervised clustering. CoV3D can serve the research community as a centralized reference and resource for spike and other coronavirus protein structures, and is available at: https://cov3d.ibbr.umd.edu .
Load More