EC
Emma Carroll
Author with expertise in Mass Spectrometry Techniques with Proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
3
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Two distinct classes of co-chaperones compete for the EEVD motif in heat shock protein 70 (Hsp70) to tune its activity

Oleta Johnson et al.Oct 18, 2021
Abstract Chaperones of the heat shock protein 70 (Hsp70) family engage in protein-protein interactions (PPIs) with many co-chaperones. One hotspot for co-chaperone binding is the EEVD motif that is found at the extreme C-terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat (TPR) domain co-chaperones, such as the E3 ubiquitin ligase CHIP, and Class B J-domain proteins (JDPs), such as DnaJB4. Although complexes between Hsp70-CHIP and Hsp70-DnaJB4 are both important for chaperone functions, the molecular determinants that dictate the competition between these co-chaperones are not clear. Using a collection of EEVD-derived peptides, we find that DnaJB4 binds to the IEEVD motif of Hsp70s, but not the related MEEVD motif of cytoplasmic Hsp90s. Then, we explored which residues are critical for binding to CHIP and DnaJB4, revealing that they rely on some shared features of the IEEVD motif, such as the C-terminal carboxylate. However, they also had unique preferences, especially at the isoleucine position. Finally, we observed a functionally important role for competition between CHIP and DnaJB4 in vitro , as DnaJB4 can limit the ubiquitination activity of the Hsp70-CHIP complex, while CHIP suppresses the chaperone activities of Hsp70-DnaJB4. Together, these results suggest that the EEVD motif has evolved to support diverse PPIs, such that competition between co-chaperones could help guide whether Hsp70-bound proteins are folded or degraded.
1
Citation2
0
Save
12

The Chemical Features of Polyanions Modulate Tau Aggregation and Conformational States

Kelly Montgomery et al.Jul 28, 2022
Abstract The aggregation of tau into insoluble fibrils is a defining feature of neurodegenerative tauopathies. However, tau has a positive overall charge and is highly soluble; so polyanions, such as heparin, are typically required to promote its aggregation in vitro . There are dozens of polyanions in living systems and it is not clear which ones might promote this process. Here, we systematically measure the ability of 30 diverse, anionic biomolecules to initiate tau aggregation, using either wild type (WT) tau or the disease associated P301S mutant. We find that polyanions from many different structural classes can promote fibril formation and that P301S tau is sensitive to a greater number of polyanions (19/30) than WT tau (16/30). We also find that some polyanions preferentially reduce the lag time of the aggregation reactions, while others enhance the elongation rate, suggesting that they act on partially distinct steps. From the resulting structure-activity relationships, the valency of the polyanion seems to be an important chemical feature, such that anions with low valency tend to be weaker aggregation inducers, even at the same overall charge. Finally, the identity of the polyanion influences fibril morphology, based on electron microscopy and limited proteolysis. These results provide insight into the crucial role of polyanion—tau interactions in modulating tau conformational dynamics with implications for understanding the tau aggregation landscape in a complex cellular environment.
12
Citation1
0
Save
23

Mechanistic basis for ubiquitin modulation of a protein energy landscape

Emma Carroll et al.Dec 7, 2020
Abstract Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other non-degradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity—and, by extension, the myriad effects of ubiquitination on substrate proteins—arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate’s C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Destabilization, however, appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a non-destabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single post-translational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality-control properties. (248 words) Significance Statement Fluctuations on a protein energy landscapes encode the mechanistic basis for vital biological processes not always evident from static structures alone. Ubiquitination, a key posttranslational modification, can affect a protein’s energy landscape with consequences for proteasomal degradation, but the molecular mechanisms driving ubiquitin-induced energetic changes remain elusive. Here, we systematically characterize the energetic effects of ubiquitination at three sites on a model protein. We find that distinct thermodynamic mechanisms can produce the same outcome of ubiquitin-induced destabilization at sensitive sites. At a non-sensitive site, we observe formation of a substrate–ubiquitin interaction that may serve to protect against destabilization. This work will enable development of predictive models of the effect of ubiquitin at any given site on a protein with implications for understanding and engineering regulated ubiquitin signaling and protein quality control in vivo.