AC
Alexander Cohen
Author with expertise in Coronavirus Disease 2019 Research
California Institute of Technology, University of Oxford, University of Cambridge
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
29
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
31

Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies

C.A. Jette et al.Oct 24, 2023
+11
P
A
C
Many anti-SARS-CoV-2 neutralizing antibodies target the ACE2-binding site on viral spike receptor-binding domains (RBDs). The most potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly-emergent zoonotic sarbecoviruses and variants, but usually show only weak neutralization potencies. We characterized two class 4 anti-RBD antibodies derived from COVID-19 donors that exhibited broad recognition and potent neutralization of zoonotic coronavirus and SARS-CoV-2 variants. C118-RBD and C022-RBD structures revealed CDRH3 mainchain H-bond interactions that extended an RBD β-sheet, thus reducing sensitivity to RBD sidechain changes, and epitopes that extended from the cryptic epitope to occlude ACE2 binding. A C118-spike trimer structure revealed rotated RBDs to allow cryptic epitope access and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.
31
Paper
Citation17
0
Save
44

Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models

Alexander Cohen et al.Oct 24, 2023
+19
A
N
A
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
44
Paper
Citation7
0
Save
11

Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes

Chengcheng Fan et al.Oct 24, 2023
+9
M
A
C
Summary Protection from SARS-related coronaviruses with spillover potential and SARS-CoV-2 variants could prevent and/or end pandemics. We show that mice immunized with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicit cross-reactive anti-sarbecovirus antibodies against conserved class 1/4 and class 3 RBD epitopes. Monoclonal antibodies (mAbs) identified from initial screening of <10,000 single B-cells secreting IgGs binding two or more sarbecovirus RBDs showed cross-reactive binding and neutralization of SARS-CoV-2 variants and animal sarbecoviruses. Single-particle cryo-EM structures of antibody–spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes and revealed neutralization mechanisms, potentials for intra-spike trimer crosslinking by single IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticles to identify therapeutic pan-sarbecovirus and pan-variant mAbs and to elicit them by vaccination.
11
Paper
Citation4
0
Save
0

Mosaic sarbecovirus vaccination elicits cross-reactive responses in pre-immunized animals

Alexander Cohen et al.May 26, 2024
+23
A
J
A
SUMMARY Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on sarbecovirus response breadths elicited by mosaic-8b, admix-8b (8 homotypics), and homotypic SARS-CoV-2, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies derived from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced with mosaic-8b boosting, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
0
Citation1
0
Save
31

Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice

Alexander Cohen et al.Oct 24, 2023
+10
Y
P
A
Protection against SARS-CoV-2 and SARS-related emergent zoonotic coronaviruses is urgently needed. We made homotypic nanoparticles displaying the receptor-binding domain (RBD) of SARS-CoV-2 or co-displaying SARS-CoV-2 RBD along with RBDs from animal betacoronaviruses that represent threats to humans (mosaic nanoparticles; 4-8 distinct RBDs). Mice immunized with RBD-nanoparticles, but not soluble antigen, elicited cross-reactive binding and neutralization responses. Mosaic-RBD-nanoparticles elicited antibodies with superior cross-reactive recognition of heterologous RBDs compared to sera from immunizations with homotypic SARS-CoV-2-RBD-nanoparticles or COVID-19 convalescent human plasmas. Moreover, sera from mosaic-RBD-immunized mice neutralized heterologous pseudotyped coronaviruses equivalently or better after priming than sera from homotypic SARS-CoV-2-RBD-nanoparticle immunizations, demonstrating no immunogenicity loss against particular RBDs resulting from co-display. A single immunization with mosaic-RBD-nanoparticles provides a potential strategy to simultaneously protect against SARS-CoV-2 and emerging zoonotic coronaviruses.
14

Multiviral Quartet Nanocages Elicit Broad Anti-Coronavirus Responses for Proactive Vaccinology

Rory Hills et al.Oct 24, 2023
+13
A
T
R
Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.
0

Construction, characterization, and immunization of nanoparticles that display a diverse array of influenza HA trimers

Alexander Cohen et al.May 7, 2020
+4
P
Z
A
Current influenza vaccines do not elicit broadly protective immune responses against multiple strains. New strategies to focus the humoral immune response to conserved regions on influenza antigens are therefore required for recognition by broadly neutralizing antibodies. It has been suggested that B cells with receptors that recognize conserved epitopes would be preferentially stimulated through avidity effects by mosaic particles presenting multiple forms of a variable antigen. We adapted SpyCatcher-based platforms, AP205 virus-like particles (VLPs) and mi3 nanoparticles (NPs), to covalently co-display SpyTagged hemagglutinin (HA) trimers from different influenza strains. Here we show successful homotypic and heterotypic conjugation of up to 8 different HA trimers to both VLPs and NPs, and demonstrate that conjugated particles were stable for several weeks of storage. We characterized the HA-VLPs and HA-NPs by cryo-electron tomography to derive the average number of conjugated HAs and their separation distances, and compared immunizations of mosaic and homotypic particles in wild-type mice. Both types of HA particles elicited strong antibody responses, but the mosaic particles did not consistently elicit broader immune responses. We conclude that covalent attachment of HAs from currently-circulating influenza strains represents a viable alternative to current annual influenza vaccine strategies, but in the absence of further modifications, is unlikely to represent a method for making a universal influenza vaccine.
5

Deep generative models predict SARS-CoV-2 Spike infectivity and foreshadow neutralizing antibody escape

Noor Youssef et al.Oct 24, 2023
+20
F
S
N
Abstract Recurrent waves of SARS-CoV-2 infection, driven by the periodic emergence of new viral variants, highlight the need for vaccines and therapeutics that remain effective against future strains. Yet, our ability to proactively evaluate such therapeutics is limited to assessing their effectiveness against previous or circulating variants, which may differ significantly in their antibody escape from future viral evolution. To address this challenge, we developed deep learning methods to predict the effect of mutations on fitness and escape from neutralizing antibodies and used this information to engineer a set of 68 unique SARS-CoV-2 Spike proteins. The designed constructs, which incorporated novel combinations of up to 46 mutations relative to the ancestral strain, were infectious and evaded neutralization by nine well-characterized panels of human polyclonal anti-SARS-CoV-2 immune sera. Designed constructs on previous SARS-CoV-2 strains anticipated the antibody neutralization escape of variants seen subsequently during the COVID-19 pandemic. We demonstrate that designed Spike constructs using data available at the time of the implementation of the 2022 bivalent mRNA booster vaccine foretold the level of neutralizing antibody escape observed in the most recently emerging variants. Our approach provides extensive datasets of antigenically diverse escape variants to evaluate the protective ability of vaccines and therapeutics to inhibit future variants. This approach is generalizable to other viral pathogens.
0

Designed mosaic nanoparticles enhance cross-reactive immune responses in mice

Eric Wang et al.May 27, 2024
+6
L
A
E
1Using computational methods, we designed 60-mer nanoparticles displaying SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) by (i) creating RBD sequences with 6 mutations in the SARS-COV-2 WA1 RBD that were predicted to retain proper folding and abrogate antibody responses to variable epitopes (mosaic-2COMs; mosaic-5COM), and (ii) selecting 7 natural sarbecovirus RBDs (mosaic-7COM). These antigens were compared with mosaic-8b, which elicits cross-reactive antibodies and protects from sarbecovirus challenges in animals. Immunizations in naïve and COVID-19 pre-vaccinated mice revealed that mosaic-7COM elicited higher binding and neutralization titers than mosaic-8b and related antigens. Deep mutational scanning showed that mosaic-7COM targeted conserved RBD epitopes. Mosaic-2COMs and mosaic-5COM elicited higher titers than homotypic SARS-CoV-2 Beta RBD-nanoparticles and increased potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons. These results support using mosaic-7COM to protect against highly mutated SARS-CoV-2 variants and zoonotic sarbecoviruses with spillover potential.
79

ESCRT recruitment to mRNA-encoded SARS-CoV-2 spike induces virus-like particles and enhanced antibody responses

Magnus Hoffmann et al.Oct 24, 2023
+7
K
Z
M
Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and protein nanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely-arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T-cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared to conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for three months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses.