YH
Yanping Hu
Author with expertise in Diagnostic Methods for COVID-19 Detection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
321
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model

Yanping Hu et al.May 21, 2009
Alemtuzumab is a humanized monoclonal antibody against CD52, an antigen found on the surface of normal and malignant lymphocytes. It is approved for the treatment of B-cell chronic lymphocytic leukaemia and is undergoing Phase III clinical trials for the treatment of multiple sclerosis. The exact mechanism by which alemtuzumab mediates its biological effects in vivo is not clearly defined and mechanism of action studies have been hampered by the lack of cross-reactivity between human and mouse CD52. To address this issue, a transgenic mouse expressing human CD52 (hCD52) was created. Transgenic mice did not display any phenotypic abnormalities and were able to mount normal immune responses. The tissue distribution of hCD52 and the level of expression by various immune cell populations were comparable to those seen in humans. Treatment with alemtuzumab replicated the transient increase in serum cytokines and depletion of peripheral blood lymphocytes observed in humans. Lymphocyte depletion was not as profound in lymphoid organs, providing a possible explanation for the relatively low incidence of infection in alemtuzumab-treated patients. Interestingly, both lymphocyte depletion and cytokine induction by alemtuzumab were largely independent of complement and appeared to be mediated by neutrophils and natural killer cells because removal of these populations with antibodies to Gr-1 or asialo-GM-1, respectively, strongly inhibited the activity of alemtuzumab whereas removal of complement by treatment with cobra venom factor had no impact. The hCD52 transgenic mouse appears to be a useful model and has provided evidence for the previously uncharacterized involvement of neutrophils in the activity of alemtuzumab.
0
Citation317
0
Save
0

An Integrated Research–Clinical BSL-2 Platform for a Live SARS-CoV-2 Neutralization Assay

Jing Wang et al.Aug 31, 2023
A reliable and efficient serological test is crucial for monitoring neutralizing antibodies against SARS-CoV-2 and its variants of concern (VOCs). Here, we present an integrated research–clinical platform for a live SARS-CoV-2 neutralization assay, utilizing highly attenuated SARS-CoV-2 (Δ3678_WA1-spike). This strain contains mutations in viral transcription regulation sequences and deletion in the open-reading-frames 3, 6, 7, and 8, allowing for safe handling in biosafety level 2 (BSL-2) laboratories. Building on this backbone, we constructed a genetically stable reporter virus (mGFP Δ3678_WA1-spike) by incorporating a modified green fluorescent protein sequence (mGFP). We also constructed mGFP Δ3678_BA.5-spike and mGFP Δ3678_XBB.1.5-spike by substituting the WA1 spike with variants BA.5 and XBB.1.5 spike, respectively. All three viruses exhibit robust fluorescent signals in infected cells and neutralization titers in an optimized fluorescence reduction neutralization assay that highly correlates with a conventional plaque reduction assay. Furthermore, we established that a streamlined robot-aided Bench-to-Clinics COVID-19 Neutralization Test workflow demonstrated remarkably sensitive, specific, reproducible, and accurate characteristics, allowing the assessment of neutralization titers against SARS-CoV-2 variants within 24 h after sample receiving. Overall, our innovative approach provides a valuable avenue for large-scale testing of clinical samples against SARS-CoV-2 and VOCs at BSL-2, supporting pandemic preparedness and response strategies.
0
Citation4
0
Save
0

Less neutralization evasion of SARS-CoV-2 BA.2.86 than XBB sublineages and CH.1.1

Yanping Hu et al.Jan 1, 2023
The highly mutated BA.2.86, with over 30 spike protein mutations in comparison to Omicron BA.2 and XBB.1.5 variants, has raised concerns about its potential to evade COVID-19 vaccination or prior SARS-CoV-2 infection-elicited immunity. In this study, we employ a live SARS-CoV-2 neutralization assay to compare the neutralization evasion ability of BA.2.86 with other emerged SARS-CoV-2 subvariants, including BA.2-derived CH.1.1, Delta-Omicron recombinant XBC.1.6, and XBB descendants XBB.1.5, XBB.1.16, XBB.2.3, EG.5.1 and FL.1.5.1. Our results show that BA.2.86 is less neutralization evasive than XBB sublineages. Among all the tested variants, CH.1.1 exhibits the greatest neutralization evasion. In comparison to XBB.1.5, the more recent XBB descendants, particularly EG.5.1 and FL.1.5.1, display increased resistance to neutralization induced by parental COVID-19 mRNA vaccine and a BA.5-Bivalent-booster. In contrast, XBC.1.6 shows a slight reduction but remains comparable sensitivity to neutralization when compared to BA.5. Furthermore, a recent XBB.1.5-breakthrough infection significantly enhances the breadth and potency of cross-neutralization. These findings reinforce the expectation that the upcoming XBB.1.5 mRNA vaccine would likely boost the neutralization of currently circulating variants, while also underscoring the critical importance of ongoing surveillance to monitor the evolution and immune evasion potential of SARS-CoV-2 variants.