AB
Alexander Bell
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
17
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
56

PanIN and CAF Transitions in Pancreatic Carcinogenesis Revealed with Spatial Data Integration

Alexander Bell et al.Jul 18, 2022
Abstract Spatial transcriptomics (ST) is a powerful new approach to characterize the cellular and molecular architecture of the tumor microenvironment. Previous single-cell RNA-sequencing (scRNA-seq) studies of pancreatic ductal adenocarcinoma (PDAC) have revealed a complex immunosuppressive environment characterized by numerous cancer associated fibroblasts (CAFs) subtypes that contributes to poor outcomes. Nonetheless, the evolutionary processes yielding that microenvironment remain unknown. Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion with potential to develop into PDAC, but the formalin-fixed and paraffin-embedded (FFPE) specimens required for PanIN diagnosis preclude scRNA-seq profiling. We developed a new experimental pipeline for FFPE ST analysis of PanINs that preserves clinical specimens for diagnosis. We further developed novel multi-omics analysis methods for threefold integration of imaging, ST, and scRNA-seq data to analyze the premalignant microenvironment. The integration of ST and imaging enables automated cell type annotation of ST spots at a single-cell resolution, enabling spot selection and deconvolution for unique cellular components of the tumor microenvironment (TME). Overall, this approach demonstrates that PanINs are surrounded by the same subtypes of CAFs present in invasive PDACs, and that the PanIN lesions are predominantly of the classical PDAC subtype. Moreover, this new experimental and computational protocol for ST analysis suggests a biological model in which CAF-PanIN interactions promote inflammatory signaling in neoplastic cells which transitions to proliferative signaling as PanINs progress to PDAC. Summary Pancreatic intraepithelial neoplasia (PanINs) are pre-malignant lesions that progress into pancreatic ductal adenocarcinoma (PDAC). Recent advances in single-cell technologies have allowed for detailed insights into the molecular and cellular processes of PDAC. However, human PanINs are stored as formalin-fixed and paraffin-embedded (FFPE) specimens limiting similar profiling of human carcinogenesis. Here, we describe a new analysis protocol that enables spatial transcriptomics (ST) analysis of PanINs while preserving the FFPE blocks required for clinical assessment. The matched H&E imaging for the ST data enables novel machine learning approaches to automate cell type annotations at a single-cell resolution and isolate neoplastic regions on the tissue. Transcriptional profiles of these annotated cells enable further refinement of imaging-based cellular annotations, showing that PanINs are predominatly of the classical subtype and surrounded by PDAC cancer associated fibroblast (CAF) subtypes. Applying transfer learning to integrate ST PanIN data with PDAC scRNA-seq data enables the analysis of cellular and molecular progression from PanINs to PDAC. This analysis identified a transition between inflammatory signaling induced by CAFs and proliferative signaling in PanIN cells as they become invasive cancers. Altogether, this integration of imaging, ST, and scRNA-seq data provides an experimental and computational approach for the analysis of cancer development and progression.
56
Citation12
0
Save
30

Uncovering the spatial landscape of molecular interactions within the tumor microenvironment through latent spaces

Atul Deshpande et al.Jun 2, 2022
Abstract Recent advances in spatial transcriptomics (ST) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor and its microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as occurs in tumor-immune interactions. We present SpaceMarkers, a novel bioinformatics algorithm to infer molecular changes from cell-cell interaction from latent space analysis of ST data. We apply this approach to infer molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.
30
Citation4
0
Save
0

PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration

Alexander Bell et al.Aug 1, 2024
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.
0
Citation1
0
Save
43

Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence

Shuming Zhang et al.Jan 12, 2023
Novel immunotherapy combination therapies have improved outcomes for patients with hepatocellular carcinoma (HCC), but responses are limited to a subset of patients and recurrence can also occur. Little is known about the inter- and intra-tumor heterogeneity in cellular signaling networks within the HCC tumor microenvironment (TME) that underlie responses to modern systemic therapy. We applied spatial transcriptomics (ST) profiling to characterize the tumor microenvironment in HCC resection specimens from a clinical trial of neoadjuvant cabozantinib, a multi-tyrosine kinase inhibitor that primarily blocks VEGF, and nivolumab, a PD-1 inhibitor in which 5 out of 15 patients were found to have a pathologic response. ST profiling demonstrated that the TME of responding tumors was enriched for immune cells and cancer associated fibroblasts (CAF) with pro-inflammatory signaling relative to the non-responders. The enriched cancer-immune interactions in responding tumors are characterized by activation of the PAX5 module, a known regulator of B cell maturation, which colocalized with spots with increased B cell markers expression suggesting strong activity of these cells. Cancer-CAF interactions were also enriched in the responding tumors and were associated with extracellular matrix (ECM) remodeling as there was high activation of FOS and JUN in CAFs adjacent to tumor. The ECM remodeling is consistent with proliferative fibrosis in association with immune-mediated tumor regression. Among the patients with major pathologic response, a single patient experienced early HCC recurrence. ST analysis of this clinical outlier demonstrated marked tumor heterogeneity, with a distinctive immune-poor tumor region that resembles the non-responding TME across patients and was characterized by cancer-CAF interactions and expression of cancer stem cell markers, potentially mediating early tumor immune escape and recurrence in this patient. These data show that responses to modern systemic therapy in HCC are associated with distinctive molecular and cellular landscapes and provide new targets to enhance and prolong responses to systemic therapy in HCC.