CK
Corey Keller
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(89% Open Access)
Cited by:
711
h-index:
24
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal

Corey Keller et al.Apr 10, 2013
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
0

Mapping human brain networks with cortico-cortical evoked potentials

Corey Keller et al.Sep 2, 2014
The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex.
0

Intracortical dynamics underlying repetitive stimulation predicts changes in network connectivity

Yuhao Huang et al.Feb 15, 2019
Abstract Targeted stimulation can be used to modulate the activity of brain networks. Previously we demonstrated that direct electrical stimulation produces predictable post-stimulation changes in brain excitability. However, understanding the neural dynamics during stimulation and its relationship to post-stimulation effects is limited but critical for treatment optimization. Here, we applied 10Hz direct electrical stimulation across several cortical regions in 14 patients implanted with intracranial electrodes for seizure monitoring. The stimulation train was characterized by a consistent increase in high gamma (70-170Hz) power. Immediately post-train, low-frequency (1-8Hz) power increased, resulting in an evoked response that was highly correlated with the neural response during stimulation. Using two measures of network connectivity, cortico-cortical evoked potentials (indexing effective connectivity) and theta coherence (indexing functional connectivity), we found a stronger response to stimulation in regions that were highly connected to the stimulation site. In these regions, repeated cycles of stimulation trains and rest progressively altered the stimulation response. Finally, after just 2 minutes (10%) of repetitive stimulation, we were able to predict post-stimulation connectivity changes with high discriminability. Taken together, this work reveals a relationship between stimulation dynamics and post-stimulation connectivity changes in humans. Thus, measuring neural activity during stimulation can inform future plasticity-inducing protocols.
0

Functional connectivity changes with rapid remission from moderate-to-severe major depressive disorder

Xiaoqian Xiao et al.Jun 21, 2019
Abstract Major depressive disorder (MDD) is prevalent and debilitating, and development of improved treatments is limited by insufficient understanding of the neurological changes associated with disease remission. In turn, efforts to elucidate these changes have been challenging due to disease heterogeneity as well as limited effectiveness, delayed onset, and significant off-target effects of treatments. We developed a form of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (lDLPFC) that in an open-label study was associated with remission from MDD in 90% of individuals in 1-5 days (Stanford Accelerated Intelligent Neuromodulation Therapy, SAINT). This provides a tool to begin exploring the functional connectivity (FC) changes associated with MDD remission. Resting-state fMRI scans were performed before and after SAINT in 18 participants with moderate-to-severe, treatment-resistant MDD. FC was determined between regions of interest defined a priori by well-described roles in emotion regulation. Following SAINT, FC was significantly decreased between subgenual cingulate cortex (sgACC) and 3 of 4 default mode network (DMN) nodes. Significant reductions in FC were also observed between the following: DLPFC-striatum, DLPFC-amygdala, DMN-amygdala, DMN-striatum, and amygdala-striatum. Greater clinical improvements were correlated with larger decreases in FC between DLPFC-amygdala and DLPFC-insula, as well as smaller decreases in FC between sgACC-DMN. Greater clinical improvements were correlated with lower baseline FC between DMN-DLPFC, DMN-striatum, and DMN-ventrolateral prefrontal cortex. The multiple, significant reductions in FC we observed following SAINT and remission from depression support the hypothesis that MDD is a state of hyper-connectivity within these networks, and rapid decoupling of network nodes may lead to rapid remission from depression. Significance statement Major depressive disorder is common and debilitating. It has been difficult to study the brain changes associated with recovery from depression, because treatments take weeks-to-months to become effective, and symptoms fail to resolve in many people. We recently developed a type of magnetic brain stimulation called SAINT. SAINT leads to full remission from depression in 90% of people within 5 days. We used SAINT and functional magnetic resonance imaging to determine how the brain changes with rapid remission from depression. We found changes in areas of the brain associated with emotion regulation. This provides a significantly clearer picture of how the non-depressed brain differs from the depressed brain, which can be used to develop rapid and effective treatments for depression.
0
Citation5
0
Save
1

Neural effects of TMS trains on the human prefrontal cortex

Jessica Ross et al.Feb 2, 2023
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train - a fundamental building block of treatment - as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex (dlPFC) in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
0

Mapping cortical excitability in the human dorsolateral prefrontal cortex

Juha Gogulski et al.May 27, 2024
Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring. To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.
18

Experimental Suppression of TMS-EEG Sensory Potentials

Jessica Ross et al.Feb 6, 2022
Abstract Background The sensory experience of transcranial magnetic stimulation (TMS) evokes cortical responses measured in EEG that confound interpretation of TMS-evoked potentials (TEPs). Methods for sensory masking have been proposed to minimize sensory contributions to the TEP, but the most effective combination for suprathreshold TMS to dorsolateral prefrontal cortex (dlPFC) is unknown. Objective We applied sensory suppression techniques and quantified electrophysiology and perception from suprathreshold dlPFC TMS to identify the best combination to minimize the sensory TEP. Methods In 21 healthy adults, we applied single pulse TMS at 120% resting motor threshold (rMT) to the left dlPFC and compared EEG vertex N100-P200 and perception. Conditions included three protocols: No masking (no auditory masking, no foam, jittered inter-stimulus interval (ISI)), Standard masking (auditory noise, foam, jittered ISI), and our ATTENUATE protocol (auditory noise, foam, over-the-ear protection, unjittered ISI). Results ATTENUATE reduced vertex N100-P200 by 56%, “click” loudness perception by 50%, and scalp sensation by 36%. We show that sensory prediction, induced with predictable ISI, has a suppressive effect on vertex N100-P200, and that combining standard suppression protocols with sensory prediction provides the best N100-P200 suppression. ATTENUATE was more effective than Standard masking , which only reduced vertex N100-P200 by 22%, loudness by 27%, and scalp sensation by 24%. Conclusions We introduce a sensory suppression protocol superior to Standard masking and demonstrate that using an unjittered ISI can contribute to minimizing sensory confounds. ATTENUATE provides superior sensory suppression to increase TEP signal-to-noise and contributes to a growing understanding of TMS-EEG sensory neuroscience. Highlights ATTENUATE is a novel sensory suppression protocol for suprathreshold dlPFC TMS ATTENUATE is superior to standard masking for minimizing sensory confounds ATTENUATE reduced vertex N100-P200 by 56% with no effect on the early TEP ATTENUATE reduced “click” loudness rating by 50% and scalp sensation by 36% Individual modifications are not sufficient to reduce vertex N100-P200 or perception
1

Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex

Juha Gogulski et al.Sep 5, 2023
We currently lack a robust and reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC), a region heavily implicated in psychiatric disorders. We recently found that the strength of early and local dlPFC single pulse transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely depending on the anatomical subregion probed, with more medial regions eliciting stronger responses than anterolateral sites. Despite these differences in amplitude of response, the reliability at each target is not known.To evaluate the reliability of EL-TEPs across the dlPFC.In 15 healthy subjects, we quantified within-session reliability of dlPFC EL-TEPs after single pulse TMS to six dlPFC subregions. We evaluated the concordance correlation coefficient (CCC) across targets and analytical parameters including time window, quantification method, region of interest, sensor-vs. source-space, and number of trials.At least one target in the anterior and posterior dlPFC produced reliable EL-TEPs (CCC>0.7). The medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). ROI size and type (sensor vs. source space) did not affect reliability. Longer (20-60 ms, CCC = 0.62) and later (30-60 ms, CCC = 0.61) time windows resulted in higher reliability compared to earlier and shorter (20-40 ms, CCC 0.43; 20-50 ms, CCC = 0.55) time windows. Peak-to-peak quantification resulted in higher reliability than the mean of the absolute amplitude. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials for a medial dlPFC target.Medial TMS location, wider time window (20-60ms), and peak-to-peak quantification improved reliability. Highly reliable EL-TEPs can be extracted from dlPFC after only a small number of trials.Medial dlPFC target improved EL-TEP reliability compared to anterior targets.After optimizing analytical parameters, at least one anterior and one posterior target was reliable (CCC>0.7).Longer (20-60 ms) and later (30-60 ms) time windows were more reliable than earlier and shorter (20-40 ms or 20-50 ms) latencies.Peak-to-peak quantification resulted in higher reliability compared to the mean of the absolute amplitude.As low as 25 trials can yield reliable EL-TEPs from the dlPFC.
Load More