RY
Rebecca Yaworski
Author with expertise in Gene Therapy for Spinal Muscular Atrophy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Central and peripheral delivery of AAV9-SMN target different pathomechanisms in a mouse model of spinal muscular atrophy

Aoife Reilly et al.Nov 8, 2021
+7
A
M
A
Abstract Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy uses a single, high titre intravenous bolus of AAV9-SMN resulting in impressive, yet limited amelioration of the clinical phenotype. However, risks of this treatment include liver toxicity. Intrathecal administration is under clinical trial but was interrupted due to safety concerns in a concomitant animal study. As there is no direct comparison between the different delivery strategies while avoiding high dose toxicity, we injected SMA mice with low dose scAAV9-cba-SMN either intravenously (IV) for peripheral SMN restoration or intracerebroventricularly (ICV) for CNS-focused SMN restoration. Here, IV injections restored SMN in peripheral tissues but not CNS, while ICV injections mildly increased SMN in the periphery and the CNS. Consequently, only ICV treatment rescued motor neuron degeneration. Surprisingly, both treatments resulted in an impressive rescue of survival, weight, motor function, and peripheral phenotypes including liver and pancreas pathology. Our work highlights independent contributions of peripheral organs to SMA pathology and suggests that treatments should not be restricted to the motor neuron. Graphical Abstract
1
Citation1
0
Save
0

Fatty acid-induced lipotoxicity inhibits choline metabolism independent of ER stress in mouse primary hepatocytes

Conor O’Dwyer et al.Aug 25, 2019
+7
N
R
C
Choline is an essential nutrient that is critical component of the membrane phospholipid phosphatidylcholine (PC), the neurotransmitter acetylcholine and the methylation pathway. In the liver specifically, PC is the major membrane constituent and can be synthesized by the CDP-choline or the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. With the continuing global rise in the rates of obesity and non-alcoholic fatty liver disease, we sought to explore how excess fatty acids (FA), typical of an obesity and hepatic steatosis, affect choline uptake and metabolism in primary hepatocytes. Our results demonstrate that hepatocytes chronically treated with palmitate, but not oleate or a mixture, had decreased choline uptake, which was associated with lower choline incorporation into PC and lower expression of choline transport proteins. Interestingly, a reduction in the rate of degradation spared PC levels in response to palmitate when compared to control. PE synthesis was slightly diminished; however, no compensatory changes in the PEMT pathway were observed. We next hypothesized that ER stress may be a potential mechanism by which palmitate treatment diminished choline. However, when we exposed primary hepatocytes to the common ER stress inducing compound tunicamycin, choline uptake, contrary to our expectation was augmented, concomitant with the transcript expression of choline transporters. Moreover, tunicamycin-induced ER stress divorced the observed increase in choline uptake from CDP-choline pathway flux since ER stress significantly diminished the incorporation and total PC content, similar to PE. Conclusion: Therefore, our results suggest that the altered FA milieu seen in obesity and fatty liver disease progression may adversely affect choline metabolism, but that compensatory mechanisms work to maintain phospholipid homeostasis.
81

Base editing as a genetic treatment for spinal muscular atrophy

Christiano Alves et al.Jan 21, 2023
+11
R
L
C
Abstract Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the SMN1 gene. Despite the development of various therapies, outcomes can remain suboptimal in SMA infants and the duration of such therapies are uncertain. SMN2 is a paralogous gene that mainly differs from SMN1 by a C•G-to-T•A transition in exon 7, resulting in the skipping of exon 7 in most SMN2 transcripts and production of only low levels of survival motor neuron (SMN) protein. Genome editing technologies targeted to the SMN2 exon 7 mutation could offer a therapeutic strategy to restore SMN protein expression to normal levels irrespective of the patient SMN1 mutation. Here, we optimized a base editing approach to precisely edit SMN2 , reverting the exon 7 mutation via an A•T-to-G•C base edit. We tested a range of different adenosine base editors (ABEs) and Cas9 enzymes, resulting in up to 99% intended editing in SMA patient-derived fibroblasts with concomitant increases in SMN2 exon 7 transcript expression and SMN protein levels. We generated and characterized ABEs fused to high-fidelity Cas9 variants which reduced potential off-target editing. Delivery of these optimized ABEs via dual adeno-associated virus (AAV) vectors resulted in precise SMN2 editing in vivo in an SMA mouse model. This base editing approach to correct SMN2 should provide a long-lasting genetic treatment for SMA with advantages compared to current nucleic acid, small molecule, or exogenous gene replacement therapies. More broadly, our work highlights the potential of PAMless SpRY base editors to install edits efficiently and safely.