BK
Benjamin Kleinstiver
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(72% Open Access)
Cited by:
7,241
h-index:
30
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects

Benjamin Kleinstiver et al.Jan 5, 2016
+4
M
V
B
CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with >85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.
0
Citation2,257
0
Save
0

Engineered CRISPR-Cas9 nucleases with altered PAM specificities

Benjamin Kleinstiver et al.Jun 22, 2015
+9
S
M
B
Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.
0
Citation1,462
0
Save
1

Enhanced proofreading governs CRISPR–Cas9 targeting accuracy

Janice Chen et al.Sep 19, 2017
+7
B
Y
J
A new engineered version of SpCas9, called HypaCas9, displays enhanced accuracy of editing without significant loss of efficiency at the desired target. One of the main concerns about the use of CRISPR in genomic editing is the possibility of 'off-target' events. Scientists have been modifying the central enzyme involved in CRISPR editing, Cas9 or its homologues, to reduce this unwanted property. Jennifer Doudna and colleagues describe a new version of this nuclease, HypaCas9, which enables more accurate editing, without substantial loss of efficiency on the desired target. The RNA-guided CRISPR–Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing1,2,3,4. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity are unknown5,6,7,8,9. Here, using single-molecule Förster resonance energy transfer experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state10 when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we design a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing.
1
Citation968
0
Save
0

Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants

Russell Walton et al.Mar 26, 2020
B
M
K
R
A PAMless base editor CRISPR-Cas DNA base editing typically requires a specific motif for targeting known as a protospacer-adjacent motif (PAM). This requirement limits the sequences within a genome that can be targeted. Walton et al. engineered specific variants of the Streptococcus pyogenes Cas9 enzyme named SpG and SpRY that could recognize and edit a wider array of PAMs. Using SpRY, the authors were able to correct previously uneditable mutations associated with human disease. Although off-target effects were observed for these engineered Cas enzymes at levels similar to those of the wild-type enzyme, depending on the context, these engineered enzymes widen the potential applications of precision genome editing. Science , this issue p. 290
0
Citation851
0
Save
0

Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells

Benjamin Kleinstiver et al.Jun 27, 2016
+6
M
S
B
On-target activities and genome-wide specificities of Cpf1 nucleases in human cells. The activities and genome-wide specificities of CRISPR-Cas Cpf1 nucleases1 are not well defined. We show that two Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) have on-target efficiencies in human cells comparable with those of the widely used Streptococcus pyogenes Cas9 (SpCas9)2,3,4,5. We also report that four to six bases at the 3′ end of the short CRISPR RNA (crRNA) used to program Cpf1 nucleases are insensitive to single base mismatches, but that many of the other bases in this region of the crRNA are highly sensitive to single or double substitutions. Using GUIDE-seq and targeted deep sequencing analyses performed with both Cpf1 nucleases, we were unable to detect off-target cleavage for more than half of 20 different crRNAs. Our results suggest that AsCpf1 and LbCpf1 are highly specific in human cells.
0
Citation607
0
Save
0

Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition

Benjamin Kleinstiver et al.Nov 2, 2015
+4
S
M
B
CRISPR-Cas9 nucleases target specific DNA sequences using a guide RNA but also require recognition of a protospacer adjacent motif (PAM) by the Cas9 protein. Although longer PAMs can potentially improve the specificity of genome editing, they limit the range of sequences that Cas9 orthologs can target. One potential strategy to relieve this restriction is to relax the PAM recognition specificity of Cas9. Here we used molecular evolution to modify the NNGRRT PAM of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, showed robust genome editing activities at endogenous human target sites with NNNRRT PAMs, thereby increasing SaCas9 targeting range by two- to fourfold. Using GUIDE-seq, we show that wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. Our strategy for evolving PAM specificity does not require structural information and therefore should be applicable to a wide range of Cas9 orthologs.
0
Citation553
0
Save
0

Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing

Benjamin Kleinstiver et al.Feb 11, 2019
+11
R
A
B
Broad use of CRISPR–Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation, we engineered an enhanced Acidaminococcus sp. Cas12a variant (enAsCas12a) that has a substantially expanded targeting range, enabling targeting of many previously inaccessible PAMs. On average, enAsCas12a exhibits a twofold higher genome editing activity on sites with canonical TTTV PAMs compared to wild-type AsCas12a, and we successfully grafted a subset of mutations from enAsCas12a onto other previously described AsCas12a variants3 to enhance their activities. enAsCas12a improves the efficiency of multiplex gene editing, endogenous gene activation and C-to-T base editing, and we engineered a high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively, enAsCas12a provides an optimized version of Cas12a that should enable wider application of Cas12a enzymes for gene and epigenetic editing. Structure-guided protein engineering of Cas12a yields variants that have increased activity and that can edit sites with previously inaccessible PAMs.
0
Citation517
0
Save
89

Cut-and-Paste DNA Insertion with Engineered Type V-K CRISPR-associated Transposases

Connor Tou et al.Jan 9, 2022
B
B
C
Abstract CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. Type V-K CASTs offer distinct technological advantages over type I CASTs given their smaller coding size, fewer components, and unidirectional insertions. However, the utility of type V-K CASTs is hindered by a replicative transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid co-integrate products. Here, we overcome this limitation by engineering new CASTs with dramatically improved product purity. To do so, we compensate for the absence of the TnsA subunit in multiple type V-K CASTs by engineering a Homing Endonuclease-assisted Large-sequence Integrating CAST compleX, or HELIX system. HELIX utilizes a nicking homing endonuclease (nHE) fused to TnsB to restore the 5 “ nicking capability needed for dual-nicking of the DNA donor. By leveraging distinct features of both type V-K and type I systems, HELIX enables cut-and-paste DNA insertion with up to 99.3% simple insertion product purity, while retaining robust integration efficiencies on genomic targets. Furthermore, we demonstrate the versatility of this approach by generating HELIX systems for other CAST orthologs. We also establish the feasibility of creating a minimal, 3-component HELIX, simplifying the number of proteins that must be expressed. Together, HELIX streamlines and improves the application of CRISPR-based transposition technologies, eliminating barriers for efficient and specific RNA-guided DNA insertions.
89
Citation9
0
Save
0

Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases

Joana Silva et al.Jul 22, 2024
+9
E
C
J
0
Citation4
0
Save
0

Allele-specific CRISPR/Cas9 genome editing of the single-base P23H mutation for rhodopsin associated dominant retinitis pigmentosa

Pingjuan Li et al.Oct 3, 2017
+6
M
B
P
Abstract Treatment strategies for dominantly inherited disorders typically involve silencing or ablating the pathogenic allele. CRISPR/Cas nucleases have shown promise in allele-specific knockout approaches when the dominant allele creates unique protospacer adjacent motifs (PAMs) that can lead to allele restricted targeting. Here, we present a spacer-mediated allele-specific knockout approach that utilizes both SpCas9 variants and truncated single guide RNAs (trusgRNAs) to achieve efficient discrimination of a single-nucleotide mutation in rhodopsin ( Rho )-P23H mice, a model of dominant retinitis pigmentosa (RP). We found that approximately 45% of the mutant P23H allele was edited at DNA level, and that the relative RNA expression of wild-type Rho was about 2.8 times more than that of mutant Rho in treated retinas. Furthermore, the progression of photoreceptor cell degeneration in outer nuclear layer was significantly delayed in treated regions of the Rho -P23H retinas at five weeks of age. Our proof-of-concept study therefore outlines a general strategy that could potentially be expanded to examine the therapeutic benefit of allele-specific gene editing approach to treat human P23H patient. Our study also extends allele-specific editing strategies beyond discrimination within the PAM sites, with potentially broad applicability to other dominant diseases.
0
Citation4
0
Save
Load More