FN
Faye New
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Brain-Age Prediction: Systematic Evaluation of Site Effects, and Sample Age Range and Size

Yuetong Yu et al.Nov 7, 2023
+12
S
P
Y
ABSTRACT Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of site harmonization, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2,101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 years and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1,600 participants. These findings have been incorporated into CentileBrain [ https://centilebrain.org/#/brainAGE2 ], an open-science, web-based platform for individualized neuroimaging metrics.
0

Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size

Yuetong Yu et al.Jul 1, 2024
+78
S
H
Y
Abstract Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain‐age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain‐age has highlighted the need for robust and publicly available brain‐age models pre‐trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain‐age model. Here we expand this work to develop, empirically validate, and disseminate a pre‐trained brain‐age model to cover most of the human lifespan. To achieve this, we selected the best‐performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain‐age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre‐trained models were tested for cross‐dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age‐bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain‐age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain ( https://centilebrain.org/#/brainAGE2 ), an open‐science, web‐based platform for individualized neuroimaging metrics.
37

Normative Modeling of Brain Morphometry Across the Lifespan using CentileBrain: Algorithm Benchmarking and Model Optimization

Ruiyang Ge et al.Jan 31, 2023
+113
P
S
R
Background: Normative modeling is a statistical approach to quantify the degree to which a particular individual-level measure deviates from the pattern observed in a normative reference population. When applied to human brain morphometric measures it has the potential to inform about the significance of normative deviations for health and disease. Normative models can be implemented using a variety of algorithms that have not been systematically appraised. Methods: To address this gap, eight algorithms were compared in terms of performance and computational efficiency using brain regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) collated from 87 international MRI datasets. Performance was assessed with the mean absolute error (MAE) and computational efficiency was inferred from central processing unit (CPU) time. The algorithms evaluated were Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLG), Hierarchical Bayesian Regression (HBR), and Multivariable Fractional Polynomial Regression (MFPR). Model optimization involved testing nine covariate combinations pertaining to acquisition features, parcellation software versions, and global neuroimaging measures (i.e., total intracranial volume, mean cortical thickness, and mean cortical surface area). Findings: Statistical comparisons across models at PFDR<0.05 indicated that the MFPR-derived sex- and region-specific models with nonlinear polynomials for age and linear effects of global measures had superior predictive accuracy; the range of the MAE of the models of regional subcortical volumes was 70-520 mm3 and the corresponding ranges for regional cortical thickness and regional cortical surface area were 0.09-0.26 mm and 24-560 mm2, respectively. The MFPR-derived models were also computationally more efficient with a CPU time below one second compared to a range of 2 seconds to 60 minutes for the other algorithms. The performance of all sex- and region-specific MFPR models plateaued at sample sizes exceeding 3,000 and showed comparable MAEs across distinct 10-year age-bins covering the human lifespan. Interpretation: These results provide an empirically benchmarked framework for normative modeling of brain morphometry that is useful for interpreting prior literature and supporting future study designs. The model and tools described here are freely available through CentileBrain (https://centilebrain.org/), a user-friendly web platform.