MP
María Portella
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
16
h-index:
47
/
i10-index:
104
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
34

Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years

Danai Dima et al.May 7, 2020
+197
A
E
D
Abstract Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalised on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine the age-related morphometric trajectories of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum early in life; the volume of the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the thalamus, amygdala and the hippocampus remained largely stable (with some degree of decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. Significant age-related increase in inter-individual variability was found for the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to derive risk predictions for the early identification of diverse clinical phenotypes.
79

Cortical Thickness Trajectories across the Lifespan: Data from 17,075 healthy individuals aged 3-90 years

Sophia Frangou et al.May 7, 2020
+196
K
I
S
Abstract Delineating age-related cortical trajectories in healthy individuals is critical given the association of cortical thickness with cognition and behaviour. Previous research has shown that deriving robust estimates of age-related brain morphometric changes requires large-scale studies. In response, we conducted a large-scale analysis of cortical thickness in 17,075 individuals aged 3-90 years by pooling data through the Lifespan Working group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium. We used fractional polynomial (FP) regression to characterize age-related trajectories in cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma (LMS) method. Inter-individual variability was estimated using meta-analysis and one-way analysis of variance. Overall, cortical thickness peaked in childhood and had a steep decrease during the first 2-3 decades of life; thereafter, it showed a gradual monotonic decrease which was steeper in men than in women particularly in middle-life. Notable exceptions to this general pattern were entorhinal, temporopolar and anterior cingulate cortices. Inter-individual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results reconcile uncertainties about age-related trajectories of cortical thickness; the centile values provide estimates of normative variance in cortical thickness, and may assist in detecting abnormal deviations in cortical thickness, and associated behavioural, cognitive and clinical outcomes.
0

Greater male than female variability in regional brain structure across the lifespan

Lara Wierenga et al.Feb 17, 2020
+158
D
I
L
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed patterns of greater male than female between-subject variance for all brain measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
37

Normative Modeling of Brain Morphometry Across the Lifespan using CentileBrain: Algorithm Benchmarking and Model Optimization

Ruiyang Ge et al.Jan 31, 2023
+113
P
S
R
Background: Normative modeling is a statistical approach to quantify the degree to which a particular individual-level measure deviates from the pattern observed in a normative reference population. When applied to human brain morphometric measures it has the potential to inform about the significance of normative deviations for health and disease. Normative models can be implemented using a variety of algorithms that have not been systematically appraised. Methods: To address this gap, eight algorithms were compared in terms of performance and computational efficiency using brain regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) collated from 87 international MRI datasets. Performance was assessed with the mean absolute error (MAE) and computational efficiency was inferred from central processing unit (CPU) time. The algorithms evaluated were Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLG), Hierarchical Bayesian Regression (HBR), and Multivariable Fractional Polynomial Regression (MFPR). Model optimization involved testing nine covariate combinations pertaining to acquisition features, parcellation software versions, and global neuroimaging measures (i.e., total intracranial volume, mean cortical thickness, and mean cortical surface area). Findings: Statistical comparisons across models at PFDR<0.05 indicated that the MFPR-derived sex- and region-specific models with nonlinear polynomials for age and linear effects of global measures had superior predictive accuracy; the range of the MAE of the models of regional subcortical volumes was 70-520 mm3 and the corresponding ranges for regional cortical thickness and regional cortical surface area were 0.09-0.26 mm and 24-560 mm2, respectively. The MFPR-derived models were also computationally more efficient with a CPU time below one second compared to a range of 2 seconds to 60 minutes for the other algorithms. The performance of all sex- and region-specific MFPR models plateaued at sample sizes exceeding 3,000 and showed comparable MAEs across distinct 10-year age-bins covering the human lifespan. Interpretation: These results provide an empirically benchmarked framework for normative modeling of brain morphometry that is useful for interpreting prior literature and supporting future study designs. The model and tools described here are freely available through CentileBrain (https://centilebrain.org/), a user-friendly web platform.
0

Brain Aging in Major Depressive Disorder: Results from the ENIGMA Major Depressive Disorder working group

Laura Han et al.Feb 26, 2019
+147
T
R
L
Background: Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in MDD patients, and whether this process is associated with clinical characteristics in a large multi-center international dataset. Methods: We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 29 samples worldwide. Normative brain aging was estimated by predicting chronological age (10-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 1,147 male and 1,386 female controls from the ENIGMA MDD working group. The learned model parameters were applied to 1,089 male controls and 1,167 depressed males, and 1,326 female controls and 2,044 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted brain age and chronological age was calculated to indicate brain predicted age difference (brain-PAD). Findings: On average, MDD patients showed a higher brain-PAD of +0.90 (SE 0.21) years (Cohen's d=0.12, 95% CI 0.06-0.17) compared to controls. Relative to controls, first-episode and currently depressed patients showed higher brain-PAD (+1.2 [0.3] years), and the largest effect was observed in those with late-onset depression (+1.7 [0.7] years). In addition, higher brain-PAD was associated with higher self-reported depressive symptomatology (b=0.05, p=0.004). Interpretation: This highly powered collaborative effort showed subtle patterns of abnormal structural brain aging in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the predictive value of these brain-PAD estimates.