VB
Vineet Bafna
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
University of California, San Diego, UC San Diego Health System, Boundless Bio (United States)
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(42% Open Access)
Cited by:
36
h-index:
17
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
67

Principles of ecDNA random inheritance drive rapid genome change and therapy resistance in human cancers

Joshua Lange et al.Oct 24, 2023
+16
Y
C
J
The foundational principles of Darwinian evolution are variation, selection, and identity by descent. Oncogene amplification on extrachromosomal DNA (ecDNA) is a common event, driving aggressive tumour growth, drug resistance, and shorter survival in patients 1-4 . Currently, the impact of non-chromosomal oncogene inheritance—random identity by descent—is not well understood. Neither is the impact of ecDNA on variation and selection. Here, integrating mathematical modeling, unbiased image analysis, CRISPR-based ecDNA tagging, and live-cell imaging, we identify a set of basic “rules” for how random ecDNA inheritance drives oncogene copy number and distribution, resulting in extensive intratumoural ecDNA copy number heterogeneity and rapid adaptation to metabolic stress and targeted cancer treatment. Observed ecDNAs obligatorily benefit host cell survival or growth and can change within a single cell cycle. In studies ranging from well-curated, patient-derived cancer cell cultures to clinical tumour samples from patients with glioblastoma and neuroblastoma treated with oncogene-targeted drugs, we show how these ecDNA inheritance “rules” can predict, a priori , some of the aggressive features of ecDNA-containing cancers. These properties are entailed by their ability to rapidly change their genomes in a way that is not possible for cancers driven by chromosomal oncogene amplification. These results shed new light on how the non-chromosomal random inheritance pattern of ecDNA underlies poor outcomes for cancer patients.
67
Citation14
0
Save
60

Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH

King Hung et al.Oct 24, 2023
+6
S
J
K
ABSTRACT Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we present a method for targeted purification of megabase-sized ecDNA by combining in-vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA (CRISPR-CATCH). We demonstrate strong enrichment of ecDNA molecules containing EGFR , FGFR2 and MYC from human cancer cells. Targeted purification of ecDNA versus chromosomal DNA enabled phasing of genetic variants and provided definitive proof of an EGFRvIII mutation on ecDNA and wild-type EGFR on chromosomal DNA in a glioblastoma neurosphere model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNA compared to the native chromosomal locus in the same cells. Finally, separation of ecDNA species by size and sequencing allowed accurate reconstruction of megabase- sized ecDNA structures with base-pair resolution. CRISPR-CATCH is a new addition to the toolkit for studying focal amplifications in cancer and will accelerate studies aiming to explore the genetic and epigenetic landscapes of ecDNA.
60
Paper
Citation9
0
Save
24

The landscape of extrachromosomal circular DNA in medulloblastoma

Owen Chapman et al.Oct 24, 2023
+28
S
J
O
SUMMARY Extrachromosomal circular DNA (ecDNA) is an important driver of aggressive tumor growth, promoting high oncogene copy number, intratumoral heterogeneity, accelerated evolution of drug resistance, enhancer rewiring, and poor outcome. ecDNA has been reported in medulloblastoma (MB), the most common malignant pediatric brain tumor, but the ecDNA landscape and its association with specific MB subgroups, its impact on enhancer rewiring, and its potential clinical implications, are not known. We assembled a retrospective cohort of 468 MB patient samples with available whole genome sequencing (WGS) data covering the four major MB subgroups WNT, SHH, Group 3 and Group 4. Using computational methods for the detection and reconstruction of ecDNA 1 , we find ecDNA in 82 patients (18%) and observe that ecDNA+ MB patients are more than twice as likely to relapse and three times as likely to die of disease. In addition, we find that individual medulloblastoma tumors often harbor multiple ecDNAs, each containing different amplified oncogenes along with co-amplified non-coding regulatory enhancers. ecDNA was substantially more prevalent among 31 analyzed patient-derived xenograft (PDX) models and cell lines than in our patient cohort. By mapping the accessible chromatin and 3D conformation landscapes of MB tumors that harbor ecDNA, we observe frequent candidate “enhancer rewiring” events that spatially link oncogenes with co-amplified enhancers. Our study reveals the frequency and diversity of ecDNA in a subset of highly aggressive tumors and suggests enhancer rewiring as a frequent oncogenic mechanism of ecDNAs in MB. Further, these results demonstrate that ecDNA is a frequent and potent driver of poor outcome in MB patients.
24
Citation8
0
Save
22

Epigenetic dysregulation from chromosomal transit in micronuclei

Albert Agustinus et al.Oct 24, 2023
+21
B
R
A
Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers [1-4], yet whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei [5, 6], and subsequent micronuclear envelope rupture [7] profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice as well as cancer and non-transformed cells. Some of the changes to histone PTMs occur due to micronuclear envelope rupture whereas others are inherited from mitotic abnormalities prior to micronucleus formation. Using orthogonal techniques, we show that micronuclei exhibit extensive differences in chromatin accessibility with a strong positional bias between promoters and distal or intergenic regions. Finally, we show that inducing CIN engenders widespread epigenetic dysregulation and that chromosomes which transit in micronuclei experience durable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, in addition to genomic copy number alterations, CIN can serve as a vehicle for epigenetic reprogramming and heterogeneity in cancer.
22
Citation5
0
Save
0

Frequent extrachromosomal oncogene amplification drives aggressive tumors

Hoon Kim et al.May 7, 2020
+9
K
N
H
Extrachromosomal DNA (ecDNA) amplification promotes high oncogene copy number, intratumoral genetic heterogeneity, and accelerated tumor evolution, but its frequency and clinical impact are not well understood. Here we show, using computational analysis of whole-genome sequencing data from 1,979 cancer patients, that ecDNA amplification occurs in at least 26% of human cancers, of a wide variety of histological types, but not in whole blood or normal tissue. We demonstrate a highly significant enrichment for oncogenes on amplified ecDNA and that the most common recurrent oncogene amplifications arise on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number matched linear DNA, coupled with enhanced chromatin accessibility. Patients whose tumors have ecDNA-based oncogene amplification showed increase of cell proliferation signature activity, greater likelihood of lymph node spread at initial diagnosis, and significantly shorter survival, even when controlled for tissue type, than do patients whose cancers are not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification plays a central role in driving the poor outcome for patients with some of the most aggressive forms of cancers.
5

Comprehensive analysis of clustered mutations in cancer reveals recurrent APOBEC3 mutagenesis of ecDNA

Erik Bergstrom et al.Oct 24, 2023
+4
M
J
E
ABSTRACT Clustered somatic mutations are common in cancer genomes with prior analyses revealing several types of clustered single-base substitutions, including doublet- and multi-base substitutions, diffuse hypermutation termed omikli , and longer strand-coordinated events termed kataegis . Here, we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome sequenced cancers from 30 cancer types. While only 3.7% of substitutions and 0.9% of indels were found to be clustered, they contributed 8.4% and 6.9% of substitution and indel drivers, respectively. Multiple distinct mutational processes gave rise to clustered indels including signatures enriched in tobacco smokers and homologous-recombination deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, while the majority of multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, previously attributed to the activity of APOBEC3 deaminases, accounted for a large proportion of clustered substitutions. However, only 16.2% of omikli matched APOBEC3 patterns with experimental validation confirming additional mutational processes giving rise to omikli. Kataegis was generated by multiple mutational processes with 76.1% of all kataegic events exhibiting AID/APOBEC3-associated mutational patterns. Co-occurrence of APOBEC3 kataegis and extrachromosomal-DNA (ecDNA) was observed in 31% of samples with ecDNA. Multiple distinct APOBEC3 kataegic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kataegic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fueling the evolution of ecDNA.
14

Transcriptional immune suppression and upregulation of double stranded DNA damage and repair repertoires in ecDNA-containing tumors

Miin Lin et al.Oct 24, 2023
+4
J
S
M
Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here we show that ecDNA containing tumors impact four major biological processes. Specifically, ecDNA containing tumors upregulate DNA damage and repair, cell cycle control, and mitotic processes, but downregulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA containing tumors, shedding light on molecular processes that give rise to their development and progression.
0

CLEAR: Composition of Likelihoods for Evolve And Resequence Experiments

Arya Iranmehr et al.May 7, 2020
V
C
A
A
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution “in-action” via Evolve-and-Resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, and wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method--Composition of Likelihoods for Evolve-And-Resequence experiments (CLEAR)--to identify signatures of selection in small population E&R experiments. CLEAR takes whole-genome sequence of pool of individuals (pool-seq) as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. CLEAR also provides unbiased estimates of model parameters, including population size, selection strength and dominance, while being computationally efficient. Extensive simulations show that CLEAR achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied CLEAR statistic to multiple E&R experiments, including, data from a study of D. melanogaster adaptation to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance.
0

Cancer avatars derived from genetically engineered pluripotent stem cells allow for longitudinal assessment of tumor development

Tomoyuki Koga et al.May 7, 2020
+18
J
I
T
Many current cellular models aimed at elucidating cancer biology do not recapitulate pathobiology including tumor heterogeneity, an inherent feature of cancer that underlies treatment resistance. Here we introduce a new cancer modeling paradigm using genetically engineered human pluripotent stem cells (hiPSCs) that capture authentic cancer pathobiology. Orthotopic engraftment of neural progenitor cells derived from hiPSCs that have been genome-edited to contain tumor-associated genetic driver mutations revealed by The Cancer Genome Atlas project for glioblastoma (GBM) result in formation of high-grade gliomas. As observed in GBM patient samples, these models harbor inter-tumor heterogeneity resembling different GBM molecular subtypes, and intra-tumor heterogeneity. Further, re-engraftment of primary tumor neurospheres generates secondary tumors with features characteristic of patient samples and present mutation-dependent patterns of tumor evolution. Thus, these cancer avatar models provide a platform for a comprehensive longitudinal assessment of human tumor development as governed by molecular subtype mutations and lineage-restricted differentiation.
0

AmpliconReconstructor: Integrated analysis of NGS and optical mapping resolves the complex structures of focal amplifications in cancer

Jens Luebeck et al.May 7, 2020
+9
S
C
J
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary mechanism driving focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA’s structure is a first step in deciphering the mechanisms of its genesis and the subsequent biological consequences. Here, we introduce a powerful new computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating performance by extensive simulations, we used AR to reconstruct fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, breakage-fusion-bridge cycles, and other complex rearrangements. By distinguishing between chromosomal and extrachromosomal origins, and by reconstructing the rearrangement signatures associated with a given fCNA’s generative mechanism, AR enables a more thorough understanding of the origins of fCNAs, and their functional consequences.
Load More