The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of pre-proteins across the plasma membrane, powered by ATP hydrolysis and the trans-membrane proton-motive-force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly by cardiolipin, a specialised phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific cardiolipin binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry and biochemical analysis of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional cardiolipin binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for cardiolipin in the conferral of PMF-stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery and thereby stimulate protein transport, by an as yet unknown mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, towards investigation of both the nature and functional implications of protein-lipid interactions.