AA
Ahmed Abdou
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
207

SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress

Erica Wolin et al.Jun 7, 2023
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
1

Large-scale map of RNA binding protein interactomes across the mRNA life-cycle

Lena Street et al.Jun 8, 2023
Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS). Aside from confirming 8,700 known and discovering 20,359 novel interactions between 1125 proteins, we determined that 73% of our IP interactions are regulated by the presence of RNA. Our PPI data enables us to link proteins to life-cycle stage functions, highlighting that nearly half of the proteins participate in at least two distinct stages. We show that one of the most highly interconnected proteins, ERH, engages in multiple RNA processes, including via interactions with nuclear speckles and the mRNA export machinery. We also demonstrate that the spliceosomal protein SNRNP200 participates in distinct stress granule-associated RNPs and occupies different RNA target regions in the cytoplasm during stress. Our comprehensive RBP-focused PPI network is a novel resource for identifying multi-stage RBPs and exploring RBP complexes in RNA maturation.
1

SEC-TMT facilitates quantitative differential analysis of protein interaction networks

Ella Doron‐Mandel et al.Jan 12, 2023
The majority of cellular proteins interact with at least one partner or assemble into molecular-complexes to exert their function. This network of protein-protein interactions (PPIs) and the composition of macromolecular machines differ between cell types and physiological conditions. Therefore, characterizing PPI networks and their dynamic changes is vital for discovering novel biological functions and underlying mechanisms of cellular processes. However, producing an in-depth, global snapshot of PPIs from a given specimen requires measuring tens to thousands of LC-MS/MS runs. Consequently, while recent works made seminal contributions by mapping PPIs at great depth, almost all focused on just 1-2 conditions, generating comprehensive but mostly static PPI networks. In this study we report the development of SEC-TMT, a method that enables identifying and measuring PPIs in a quantitative manner from only 4-8 LC-MS/MS runs per biological sample. This was accomplished by incorporating tandem mass tag (TMT) multiplexing with a size exclusion chromatography mass spectrometry (SEC-MS) work-flow. SEC-TMT reduces measurement time by an order of magnitude while maintaining resolution and coverage of thousands of cellular interactions, equivalent to the gold standard in the field. We show that SEC-TMT provides benefits for conducting differential analyses to measure changes in the PPI network between conditions. This development makes it feasible to study dynamic systems at scale and holds the potential to drive more rapid discoveries of PPI impact on cellular processes.