ER
Elisabeth Roitinger
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
451
h-index:
20
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dissociation of Cohesin from Chromosome Arms and Loss of Arm Cohesion during Early Mitosis Depends on Phosphorylation of SA2

Silke Hauf et al.Feb 22, 2005
+3
B
E
S
Cohesin is a protein complex that is required to hold sister chromatids together. Cleavage of the Scc1 subunit of cohesin by the protease separase releases the complex from chromosomes and thereby enables the separation of sister chromatids in anaphase. In vertebrate cells, the bulk of cohesin dissociates from chromosome arms already during prophase and prometaphase without cleavage of Scc1. Polo-like kinase 1 (Plk1) and Aurora-B are required for this dissociation process, and Plk1 can phosphorylate the cohesin subunits Scc1 and SA2 in vitro, consistent with the possibility that cohesin phosphorylation by Plk1 triggers the dissociation of cohesin from chromosome arms. However, this hypothesis has not been tested yet, and in budding yeast it has been found that phosphorylation of Scc1 by the Polo-like kinase Cdc5 enhances the cleavability of cohesin, but does not lead to separase-independent dissociation of cohesin from chromosomes. To address the functional significance of cohesin phosphorylation in human cells, we have searched for phosphorylation sites on all four subunits of cohesin by mass spectrometry. We have identified numerous mitosis-specific sites on Scc1 and SA2, mutated them, and expressed nonphosphorylatable forms of both proteins stably at physiological levels in human cells. The analysis of these cells lines, in conjunction with biochemical experiments in vitro, indicate that Scc1 phosphorylation is dispensable for cohesin dissociation from chromosomes in early mitosis but enhances the cleavability of Scc1 by separase. In contrast, our data reveal that phosphorylation of SA2 is essential for cohesin dissociation during prophase and prometaphase, but is not required for cohesin cleavage by separase. The similarity of the phenotype obtained after expression of nonphosphorylatable SA2 in human cells to that seen after the depletion of Plk1 suggests that SA2 is the critical target of Plk1 in the cohesin dissociation pathway.
0
Citation427
0
Save
62

E3 ubiquitin ligase RNF213 employs a non-canonical zinc finger active site and is allosterically regulated by ATP

Juraj Ahel et al.May 10, 2021
+5
D
A
J
RNF213 is a giant E3 ubiquitin ligase and a major susceptibility factor of Moyamoya disease, a cerebrovascular disorder that can result in stroke or death. In the cell, RNF213 is involved in lipid droplet formation, lipotoxicity, hypoxia, and NF-κB signaling, but its exact function in these processes is unclear. Structural characterization has revealed the presence of a dynein-like ATPase module and an unprecedented but poorly understood E3 module. Here, we demonstrate that RNF213 E3 activity is dependent on ATP binding, rather than ATP hydrolysis, and is particularly responsive to the ATP/ADP/AMP ratio. Biochemical and activity-based probe analyses identify a non-canonical zinc finger domain as the E3 active site, which utilizes the strictly conserved Cys4462, not involved in zinc coordination, as the reactive nucleophile. The cryo-EM structure of the trapped RNF213:E2~Ub intermediate reveals RNF213 C-terminal domain as the E2 docking site, which positions the ubiquitin-loaded E2 proximal to the catalytic zinc finger, facilitating nucleophilic attack of Cys4462 on the E2~Ub thioester. Our findings show that RNF213 represents an undescribed type of a transthiolation E3 enzyme and is regulated by adenine nucleotide concentration via its ATPase core, possibly allowing it to react to changing metabolic conditions in the cell.
62
Citation19
0
Save
1

A molecular network of conserved factors keeps ribosomes dormant in the egg

Friederike Leesch et al.Nov 3, 2021
+10
M
I
F
Abstract Ribosomes are produced in large quantities during oogenesis and stored in the egg. However, the egg and early embryo are translationally repressed. Using mass-spectrometry and cryo-EM analyses of ribosomes isolated from zebrafish and Xenopus eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant to an active state during the first hours of embryogenesis. Dormant ribosomes are associated with four conserved factors that form two modules and occupy functionally important sites of the ribosome: a Habp4-eEF2 module that stabilizes ribosome levels and a Dap1b/Dapl1-eIF5a module that represses translation. Dap1b/Dapl1 is a newly discovered translational inhibitor that stably inserts into the polypeptide exit tunnel. Thus, a developmentally programmed, conserved ribosome state plays a key role in ribosome storage and translational repression in the egg.
1
Citation4
0
Save
18

Glucose intolerance in aging is mediated by the Gpcpd1-GPC metabolic axis

Domagoj Cikes et al.Oct 26, 2021
+22
A
M
D
Abstract Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, muscle mediated metabolic homeostasis is perturbed, contributing to the onset of multiple chronic diseases. Our knowledge on the mechanisms responsible for this age-related perturbation is limited, as it is difficult to distinguish between correlation and causality of molecular changes in muscle aging. Glycerophosphocholine phosphodiesterase 1 (GPCPD1) is a highly abundant muscle enzyme responsible for the hydrolysis of the lipid glycerophosphocholine (GPC). The physiological function of GPCPD1 remained largely unknown. Here, we report that the GPCPD1-GPC metabolic pathway is dramatically perturbed in the aged muscle. Muscle-specific inactivation of Gpcpd1 resulted in severely affected glucose metabolism, without affecting muscle development. This pathology was muscle specific and did not occur in white fat-, brown fat- and liver-deficient Gpcpd1 deficient mice. Moreover, in the muscle specific mutant mice, glucose intolerance was markedly accelerated under high sugar and high fat diet. Mechanistically, Gpcpd1 deficiency results in accumulation of GPC, without any other significant changes in the global lipidome. This causes an “aged-like” transcriptomic signature in young Gpcpd1 deficient muscles and impaired insulin signaling. Finally, we report that GPC levels are markedly perturbed in muscles from both aged humans and patients with Type 2 diabetes, with a high correlation between GPC levels and increased chronological age. Our findings show the novel and critical physiological function of GPCPD1-GPC metabolic pathway to glucose metabolism, and the perturbation of this pathway with aging, which may contribute to glucose intolerance in aging.
18
Citation1
0
Save
1

Functionally distinct promoter classes initiate transcription via different mechanisms reflected in focused versus dispersed initiation patterns

Leonid Serebreni et al.Oct 1, 2022
+8
V
L
L
Abstract Recruitment of RNA polymerase II (Pol II) to promoter regions is essential for transcription. Despite conflicting evidence, the Pol II Pre-Initiation Complex (PIC) is often thought to be of uniform composition and assemble at all promoters via an identical mechanism. Here, we show using Drosophila melanogaster S2 cells as a model that promoter classes with distinct functions and initiation patterns function via PICs that display different compositions and dependencies: developmental promoter DNA readily associates with the canonical Pol II PIC, whereas housekeeping promoter DNA does not and instead recruit different factors such as DREF. Consistently, TBP and DREF are required by distinct sets of promoters, and TBP and its paralog TRF2 function at different promoter types, partly exclusively and partly redundantly. In contrast, TFIIA is required for transcription from all promoters, and we identify factors that can recruit and/or stabilize TFIIA at housekeeping promoters and activate transcription. We show that promoter activation by these factors is sufficient to induce the dispersed transcription initiation patterns characteristic of housekeeping promoters. Thus, different promoter classes direct distinct mechanisms of transcription initiation, which relate to different focused versus dispersed initiation patterns.
0

N-terminal β-strand underpins biochemical specialization of an ATG8 isoform

Erin Zess et al.Oct 25, 2018
+14
M
T
E
ATG8 is a highly-conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and numerous proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation followed by mass spectrometry, to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal β-strand -and, in particular, a single amino acid polymorphism- underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein′s ATG8 interacting motif. Additional proteomics experiments indicated that the N-terminal β-strand shapes the ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.
0

Metabolic enzymes moonlight as selective autophagy receptors to protect plants against viral-induced cellular damage

Marion Clavel et al.May 6, 2024
+29
X
M
M
Abstract RNA viruses co-opt the host endomembrane system and organelles to build replication complexes for infection. How the host responds to these membrane perturbations is poorly understood. Here, we explore the autophagic response of Arabidopsis thaliana to three viruses that hijack different cellular compartments. Autophagy is significantly induced within systemically infected tissues, its disruption rendering plants highly sensitive to infection. Contrary to being an antiviral defense mechanism as previously suggested, quantitative analyses of the viral loads established autophagy as a tolerance pathway. Further analysis of one of these viruses, the Turnip Crinkle Virus (TCV) that hijack mitochondria, showed that despite perturbing mitochondrial integrity, TCV does not trigger a typical mitophagy response. Instead, TCV and Turnip yellow mosaic virus (TYMV) infection activates a distinct selective autophagy mechanism, where oligomeric metabolic enzymes moonlight as selective autophagy receptors and degrade key executors of defense and cell death such as EDS1. Altogether, our study reveals an autophagy-regulated metabolic rheostat that gauges cellular integrity during viral infection and degrades cell death executors to avoid catastrophic amplification of immune signaling.
0

ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL

Gordana Wutz et al.Sep 23, 2019
+17
B
R
G
Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.
67

A conserved fertilization complex of Izumo1, Spaca6, and Tmem81 mediates sperm-egg interaction in vertebrates

Victoria Deneke et al.Jul 28, 2023
+16
Y
A
V
ABSTRACT Fertilization, the fusion of sperm and egg, is essential for sexual reproduction. While several proteins have been demonstrated to be essential for the binding and fusion of gametes in vertebrates, the molecular mechanisms driving this key process are poorly understood. Here, we performed a protein interaction screen using AlphaFold-Multimer to uncover protein-protein interactions in fertilization. This screen resulted in the prediction of a trimeric complex composed of the essential fertilization factors Izumo1 and Spaca6, and Tmem81, a protein previously not implicated in fertilization. We show that Tmem81 is a conserved, testis-expressed transmembrane protein that is evolutionarily related to Izumo1 and Spaca6 and is essential for male fertility in fish and mice. Consistent with trimer formation in vivo , zebrafish izumo1 -/- , spaca6 -/- , and tmem81 -/- mutants exhibit the same sperm-egg binding defect and show co-depletion of all three proteins in sperm. Moreover, we provide experimental evidence that Izumo1, Spaca6, and Tmem81 interact in zebrafish sperm. Strikingly, the Izumo1-Spaca6 interaction is predicted to form a cleft that serves as a binding site for Bouncer, the only identified egg protein essential for fertilization in zebrafish. Together, these results provide compelling evidence for a conserved sperm factor complex in vertebrates that forms a specific interface for the sperm-egg interaction required for successful fertilization.
0

Increase in ER-mitochondria contacts and mitochondrial fusion are hallmarks of mitochondrial activation during embryogenesis

Anastasia Chugunova et al.Jun 11, 2024
+15
R
H
A
Summary Mitochondrial ATP production is essential for development, yet the mechanisms underlying the continuous increase in mitochondrial activity during embryogenesis remain elusive. Using zebrafish as a model system for vertebrate development, we comprehensively profile mitochondrial activity, morphology, metabolome, proteome and phospho-proteome as well as respiratory chain enzymatic activity. Our data show that the increase in mitochondrial activity during embryogenesis does not require mitochondrial biogenesis, is not limited by metabolic substrates at early stages, and occurs without an increase in the abundance of respiratory chain complexes or their in vitro activity. Our analyses pinpoint a previously unexplored increase in mitochondrial-ER association during early stages in combination with changes in mitochondrial morphology at later stages as possible contributors to the rise in mitochondrial activity during embryogenesis. Overall, our systematic profiling of the molecular and morphological changes to mitochondria during embryogenesis provides a valuable resource for further studying mitochondrial function during embryogenesis.