HW
Huixian Wu
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
3,865
h-index:
25
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structure of the human κ-opioid receptor in complex with JDTic

Huixian Wu et al.Mar 20, 2012
+13
M
D
H
Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and—in the case of κ-opioid receptor (κ-OR)—dysphoria and psychotomimesis. Here we report the crystal structure of the human κ-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human κ-OR. Modelling of other important κ-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5′-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure–activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for κ-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human κ-OR. The crystal structure of the human κ-opioid receptor in complex with an antagonist, JDTic, is determined, with potential importance for the design of new therapeutic agents. Four papers in this issue of Nature present the long-awaited high-resolution crystal structures of the four known opioid receptors in ligand-bound conformations. These G-protein-coupled receptors are the targets of a broad range of drugs, including painkillers, antidepressants, anti-anxiety agents and anti-addiction medications. Brian Kobilka’s group reports the crystal structure of the µ-opioid receptor bound to a morphinan antagonist and the δ-opioid receptor bound to naltrindole. Raymond Stevens’ group reports on the κ-opioid receptor bound to the selective antagonist JDTic, and the nociceptin/orphanin FQ receptor bound to a peptide mimetic. In an associated News and Views, Marta Filizola and Lakshmi Devi discuss the implications of these landmark papers for research on the mechanisms underlying receptor function and drug development.
0

Structure of an Agonist-Bound Human A 2A Adenosine Receptor

Fei Xu et al.Mar 11, 2011
+5
V
H
F
Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.
0
Paper
Citation793
0
Save
0

Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator

Huixian Wu et al.Mar 7, 2014
+9
K
C
H
Completing the Set G protein–coupled receptors (GPCRs) are membrane proteins that transduce extracellular signals to activate diverse signaling pathways. Significant insight into GPCR function has come from structures of three of four classes of GPCRs—A, B, and Frizzled. Wu et al. (p. 58 , published online 6 March) complete the picture by reporting the structure of metabotropic glutamate receptor 1, a class C GPCR. The structure shows differences in the seven-transmembrane (7TM) domain between class C and other classes; however, the overall fold is preserved. Class C GPCRs are known to form dimers through their extracellular domains; however, the structure suggests additional interactions between the 7TM domains mediated by cholesterol.
0

Structural Basis for Molecular Recognition at Serotonin Receptors

Chong Wang et al.Mar 22, 2013
+20
J
Y
C
Dissecting Serotonin Receptors Serotonin receptors are the targets for many widely used drugs prescribed to treat ailments from depression to obesity and migraine headaches (see the Perspective by Palczewski and Kiser ). C. Wang et al. (p. 610 , published online 21 March) and Wacker et al. (p. 615 , published online 21 March) describe crystal structures of two members of the serotonin family of receptors bound to antimigraine medications or to a precursor of the hallucinogenic drug LSD. Subtle differences in the way particular ligands bind to the receptors cause substantial differences in the signals generated by the receptor and the consequent biological responses. The structures reveal how the same ligand can activate one or both of the two main serotonin receptor signaling mechanisms, depending on which particular receptor it binds.
0

Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

Allison Thompson et al.May 1, 2012
+10
E
W
A
The crystal structure of the human nociceptin/orphanin FQ peptide receptor in complex with the peptide mimetic antagonist compound-24 is determined, with potential importance for the development of new therapeutic agents. Four papers in this issue of Nature present the long-awaited high-resolution crystal structures of the four known opioid receptors in ligand-bound conformations. These G-protein-coupled receptors are the targets of a broad range of drugs, including painkillers, antidepressants, anti-anxiety agents and anti-addiction medications. Brian Kobilka’s group reports the crystal structure of the µ-opioid receptor bound to a morphinan antagonist and the δ-opioid receptor bound to naltrindole. Raymond Stevens’ group reports on the κ-opioid receptor bound to the selective antagonist JDTic, and the nociceptin/orphanin FQ receptor bound to a peptide mimetic. In an associated News and Views, Marta Filizola and Lakshmi Devi discuss the implications of these landmark papers for research on the mechanisms underlying receptor function and drug development. Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the ‘classical’ opioid receptors, δ, κ and μ (δ-OR, κ-OR and μ-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR1. Although it shares high sequence similarity with classical opioid GPCR subtypes (∼60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands2,3. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand–receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors κ (ref. 5) and μ (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP–compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.
0

Structure of the human smoothened receptor bound to an antitumour agent

Chong Wang et al.May 1, 2013
+7
V
H
C
The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops. The crystal structure of the human smoothened (SMO) receptor is presented in complex with a small-molecule antitumour agent; this represents the first example of a non-class-A, 7-transmembrane (7TM) receptor structure, revealing different conserved motifs common within class frizzled 7TM receptors and an unusually complex arrangement of long extracellular loops stabilized by disulphide bonds. The smoothened (SMO) receptor is a key signal transducer in the hedgehog signalling pathway that is responsible for the maintenance of normal embryonic development and is also implicated in carcinogenesis. The SMO receptor was classified as a class frizzled (class F) G-protein-coupled receptor (GPCR). In this paper the authors report the X-ray crystal structure of the human SMO receptor bound to the small-molecule antagonist LY2940680, an orally active anticancer compound that is in clinical trials. This is the first published structure of a non-class-A GPCR; most conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds.
0

Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine

Ling Qin et al.Jan 23, 2015
+10
L
I
L
Chemokines and their receptors control cell migration during development, immune system responses, and in numerous diseases, including inflammation and cancer. The structural basis of receptor:chemokine recognition has been a long-standing unanswered question due to the challenges of structure determination for membrane protein complexes. Here, we report the crystal structure of the chemokine receptor CXCR4 in complex with the viral chemokine antagonist vMIP-II at 3.1 angstrom resolution. The structure revealed a 1:1 stoichiometry and a more extensive binding interface than anticipated from the paradigmatic two-site model. The structure helped rationalize a large body of mutagenesis data and together with modeling provided insights into CXCR4 interactions with its endogenous ligand CXCL12, its ability to recognize diverse ligands, and the specificity of CC and CXC receptors for their respective chemokines.
0
Citation346
0
Save
0

Discovery of SARS-CoV-2 papain-like protease (PLpro) inhibitors with efficacy in a murine infection model

Michelle Garnsey et al.Jan 29, 2024
+37
M
J
M
Abstract Vaccines and first-generation antiviral therapeutics have provided important protection against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there remains a need for additional therapeutic options that provide enhanced efficacy and protection against potential viral resistance. The SARS-CoV-2 papain-like protease (PL pro ) is one of two essential cysteine proteases involved in viral replication. While inhibitors of the SARS-CoV-2 main protease (M pro ) have demonstrated clinical efficacy, known PL pro inhibitors have to date lacked the inhibitory potency and requisite pharmacokinetics to demonstrate that targeting PL pro translates to in vivo efficacy in a preclinical setting. Herein, we report the machine learning-driven discovery of potent, selective, and orally available SARS-CoV-2 PL pro inhibitors, with lead compound PF-07957472 ( 4 ) providing robust efficacy in a mouse-adapted model of COVID-19 infection.
0
Citation3
0
Save
0

Structural basis for CCR6 modulation by allosteric antagonists

David Wasilko et al.Apr 6, 2024
+36
P
C
D
Abstract The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases such as psoriasis and inflammatory bowel disease. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation mediated by CCL20. Here, we present two inactive CCR6 structures determined by cryo-EM in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. OXM1 and OXM2 are oxomorpholine (OXM) analogues which are highly selective for CCR6 and disrupt the molecular network critical for receptor activation by binding to an extracellular allosteric pocket within the transmembrane domain. A U-shaped conformation stabilized by intramolecular interactions was revealed by structural and NMR studies of active OXM analogues. SQA1 is a squaramide (SQA) derivative with close-in analogues that were previously reported to be antagonists of CCR6 and other chemokine receptors. Our structures reveal an intracellular pocket occupied by SQA1 that overlaps with the G protein binding site. In addition, SQA1 stabilizes a closed conformation of the intracellular pocket, a hallmark of the inactive state of GPCRs. Minimal communication was found between the two allosteric pockets. Overall, our work provides new evidence of the versatility of GPCR antagonism by small molecules, complementing previous knowledge on CCR6 activation, and sheds light on drug discovery approaches to target CCR6 for autoimmune disorders.
0

Preclinical Characterization of the Omicron XBB.1.5-Adapted BNT162b2 COVID-19 Vaccine

Kayvon Modjarrad et al.Jan 1, 2023
+32
W
Y
K
As SARS-CoV-2 continues to evolve, increasing in its potential for greater transmissibility and immune escape, updated vaccines are needed to boost adaptive immunity to protect against COVID-19 caused by circulating strains. Here, we report features of the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine, which contains the same mRNA backbone as the original BNT162b2 vaccine, modified by the incorporation of XBB.1.5-specific sequence changes in the encoded prefusion-stabilized SARS-CoV-2 spike protein (S(P2)). Biophysical characterization of Omicron XBB.1.5 S(P2) demonstrated that it maintains a prefusion conformation that adopts a flexible and predominantly open one-RBD-up state, with high affinity binding to the human ACE-2 receptor. When administered as a 4th dose in BNT162b2-experienced mice, the monovalent Omicron XBB.1.5 vaccine elicited substantially higher serum neutralizing titers against pseudotyped viruses of Omicron XBB.1.5, XBB.1.16, XBB.1.16.1, XBB.2.3, EG.5.1 and HV.1 sublineages and the phylogenetically distant BA.2.86 lineage than the bivalent Wild Type + Omicron BA.4/5 vaccine. Similar trends were observed against Omicron XBB sublineage pseudoviruses when the vaccine was administered as a 2-dose primary series in naive mice. Strong S-specific Th1 CD4+ and IFN[&gamma]+ CD8+ T cell responses were also observed. These findings, together with prior experience with variant-adapted vaccine responses in preclinical and clinical studies, suggest that the monovalent Omicron XBB.1.5-adapted BNT162b2 vaccine is anticipated to confer protective immunity against dominant SARS-CoV-2 strains.
Load More