JH
Jens Hjerling‐Leffler
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Karolinska Institutet, Laboratory of Molecular Genetics, New York University
+ 2 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
24
(29% Open Access)
Cited by:
967
h-index:
39
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Jeanne Savage et al.Aug 15, 2022
+114
S
P
J
Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
16
Paper
Citation959
3
Save
0

Conditional GWAS analysis identifies putative disorder-specific SNPs for psychiatric disorders

Enda Byrne et al.May 7, 2020
+16
T
Z
E
Abstract Substantial genetic liability is shared across psychiatric disorders but less is known about risk variants that are specific to a given disorder. We used multi-trait conditional and joint analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of genetically correlated traits to identify putative disorder-specific SNP associations. We applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric Genomics Consortium – schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genom-wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. However, subsets of genome-wide significant variants had larger conditional effect sizes consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. In addition, we identified a number of variants that approached genome-wide significance in the original GWAS and have larger conditional effect sizes after conditioning on the other disorders. We show that decreased expression of VPS29 in the brain may increase risk to SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of MD but decreased risk of SCZ and BIP.
0

Distinct biological signature and modifiable risk factors underlie the comorbidity between major depressive disorder and cardiovascular disease

Jacob Bergstedt et al.Sep 11, 2024
+23
Z
J
J
Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Here we show that CVDs share most of their genetic risk factors with MDD. Multivariate genome-wide association analysis of shared genetic liability between MDD and atherosclerotic CVD revealed seven loci and distinct patterns of tissue and brain cell-type enrichments, suggesting the involvement of the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic and psychosocial or lifestyle risk factors. Our data indicated causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and showed that the causal effects were partly explained by metabolic and psychosocial or lifestyle factors. The distinct signature of MDD-atherosclerotic CVD comorbidity suggests an immunometabolic subtype of MDD that is more strongly associated with CVD than overall MDD. In summary, we identified biological mechanisms underlying MDD-CVD comorbidity and modifiable risk factors for prevention of CVD in individuals with MDD.
0
Citation1
0
Save
0

Genetic Identification of Cell Types Underlying Brain Complex Traits Yields Novel Insights Into the Etiology of Parkinson’s Disease

Julien Bryois et al.May 6, 2020
+8
T
N
J
Genome-wide association studies (GWAS) have discovered hundreds of loci associated with complex brain disorders, and provide the best current insights into the etiology of these idiopathic traits. However, it remains unclear in which cell types these variants are active, which is essential for understanding etiology and subsequent experimental modeling. Here we integrate GWAS results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying psychiatric disorders, neurological diseases, and brain complex traits. We show that psychiatric disorders are predominantly associated with cortical and hippocampal excitatory neurons, as well as medium spiny neurons from the striatum. Cognitive traits were generally associated with similar cell types but their associations were driven by different genes. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, we found that Parkinson’s disease is not only genetically associated with cholinergic and monoaminergic neurons (which include dopaminergic neurons from the substantia nigra) but also with neurons from the enteric system and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease.
0

Molecular architecture of the mouse nervous system

Amit Zeisel et al.May 6, 2020
+16
P
H
A
The mammalian nervous system executes complex behaviors controlled by specialised, precisely positioned and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse, and were grouped by developmental anatomical units, and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission and membrane conductance. We discovered several distinct, regionally restricted, astrocytes types, which obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity, followed by a secondary diversi cation. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system, and enables genetic manipulation of specific cell types.
0

Genetic Identification Of Brain Cell Types Underlying Schizophrenia

Nathan Skene et al.May 6, 2020
+16
T
J
N
With few exceptions, the marked advances in knowledge about the genetic basis for schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. Applying knowledge of the cellular taxonomy of the brain from single-cell RNA-sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. The common variant genomic results consistently mapped to pyramidal cells, medium spiny neurons, and certain interneurons but far less consistently to embryonic, progenitor, or glial cells. These enrichments were due to distinct sets of genes specifically expressed in each of these cell types. Many of the diverse gene sets associated with schizophrenia (including antipsychotic targets) implicate the same brain cell types. Our results provide a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. While some of the genetic risk is associated with GABAergic interneurons, this risk largely does not overlap with that from projecting cells.
0

GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence

Jeanne Savage et al.May 6, 2020
+114
S
P
J
Intelligence is highly heritable and a major determinant of human health and well-being. Recent genome-wide meta-analyses have identified 24 genomic loci linked to intelligence, but much about its genetic underpinnings remains to be discovered. Here, we present the largest genetic association study of intelligence to date (N=279,930), identifying 206 genomic loci (191 novel) and implicating 1,041 genes (963 novel) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and identify 89 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain and specifically in striatal medium spiny neurons and cortical and hippocampal pyramidal neurons. Gene-set analyses implicate pathways related to neurogenesis, neuron differentiation and synaptic structure. We confirm previous strong genetic correlations with several neuropsychiatric disorders, and Mendelian Randomization results suggest protective effects of intelligence for Alzheimer's dementia and ADHD, and bidirectional causation with strong pleiotropy for schizophrenia. These results are a major step forward in understanding the neurobiology of intelligence as well as genetically associated neuropsychiatric traits.
0

A spatial atlas of inhibitory cell types in mouse hippocampus

Xiaoyan Qian et al.May 6, 2020
+5
T
K
X
Understanding the function of a tissue requires knowing the spatial organization of its constituent cell types. In the cerebral cortex, single-cell RNA sequencing (scRNA-seq) has revealed the genome-wide expression patterns that define its many, closely related cell types, but cannot reveal their spatial arrangement. Here we introduce probabilistic cell typing by in situ sequencing (pciSeq), an approach that leverages prior scRNA-seq classification to identify cell types using multiplexed in situ RNA detection. We applied this method to map the inhibitory neurons of hippocampal area CA1, a cell system critical for memory function, for which ground truth is available from extensive prior work identifying the laminar organization of subtly differing cell types. Our method confidently identified 16 interneuron classes, in a spatial arrangement closely matching ground truth. This method will allow identifying the spatial organization of fine cell types across the brain and other tissues.
0

Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration

Hermany Munguba et al.May 7, 2020
+8
H
K
H
Recent work suggests that cortical interneuron diversity arises from genetic mechanisms guided by the interplay of intrinsic developmental patterning and local extrinsic cues. Individual genetic programs underlying subtype identity are at least partly established in postmitotic neural precursors, prior to their tangential migration and integration in the cortical circuitry. Nevertheless, it is unclear how distinct interneuron identities are maintained during their migration and maturation. Sox6 is a transcription factor with an established role in MGE-derived interneuron maturation and positional identity. To determine its role in maintaining somatostatin (Sst)-expressing interneurons' subtype identity, we conditionally removed Sox6 in migrating Sst interneurons and assessed the effects on their mature identity using single-cell RNA-sequencing (scRNAseq), in situ hybridization and electrophysiology. Sox6 removal prior to migration in Sst-expressing neurons reduced subtype diversity without affecting the overall number of neurons. Seven out of nine Sst-expressing molecular subtypes were absent in the mature primary somatosensory cortex of Sox6-cKO mice, including the Chodl-Nos1-expressing type which has been shown to be specified at, or shortly after, cell cycle exit. The remaining Sst-expressing subtypes in the Sox6-cKO cortex comprised three molecular subtypes, Crh-C1ql3 and Hpse-Cbln4, and a third subtype that seemed to be a molecular hybrid of these subtypes. Moreover, Sox6-cKO cells still expressed genes enriched within the entire class of Sst-expressing neurons, such as Sst, Lhx6, Satb1, Elfn1 and Mafb. Removal of Sox6 at P7, after cells have reached their final destination and begin integration into the network, did not disrupt Chodl-Nos1 marker expression. Our findings suggest that expression of Sox6 during the migratory phase of cortical interneurons is necessary for maintenance of Sst+ subtype identity, indicating that subtype maintenance during migration requires active transcriptional programs.
0

Molecular organization of CA1 interneuron classes

Kenneth Harris et al.May 7, 2020
+6
L
L
K
GABAergic interneurons are key regulators of hippocampal circuits, but our understanding of the diversity and classification of these cells remains controversial. Here we analyze the organization of interneurons in the CA1 area, using the combinatorial patterns of gene expression revealed by single-cell mRNA sequencing (scRNA-seq). This analysis reveals a 5-level hierarchy of cell classes. Most of the predicted classes correspond closely to known interneuron types, allowing us to predict a large number of novel molecular markers of these classes. In addition we identified a major new interneuron population localized at the border of strata radiatum and lacunosum-moleculare that we term "R2C2 cells" after their characteristic combinatorial expression of Rgs12, Reln, Cxcl14, and Cpne5. Several predictions of this classification scheme were verified using in situ hybridization and immunohistochemistry, providing further confidence in the gene expression patterns and novel classes predicted by the single cell data.
Load More