HH
Henning Hermjakob
Author with expertise in Analysis of Gene Interaction Networks
European Bioinformatics Institute, Wellcome Trust, Open Targets
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(50% Open Access)
Cited by:
381
h-index:
87
/
i10-index:
231
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).
0

Memote: A community driven effort towards a standardized genome-scale metabolic model test suite

Christian Lieven et al.May 6, 2020
+61
B
M
C
Abstract Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote ( https://github.com/opencobra/memote ) an open-source software containing a community-maintained, standardized set of me tabolic mo del te sts. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model’s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.
1

Publisher Correction: MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
169

COVID-19 Disease Map, a computational knowledge repository of SARS-CoV-2 virus-host interaction mechanisms

Marek Ostaszewski et al.Oct 24, 2023
+138
A
A
M
Abstract We describe a large-scale community effort to build an open-access, interoperable, and computable repository of COVID-19 molecular mechanisms - the COVID-19 Disease Map. We discuss the tools, platforms, and guidelines necessary for the distributed development of its contents by a multi-faceted community of biocurators, domain experts, bioinformaticians, and computational biologists. We highlight the role of relevant databases and text mining approaches in enrichment and validation of the curated mechanisms. We describe the contents of the Map and their relevance to the molecular pathophysiology of COVID-19 and the analytical and computational modelling approaches that can be applied for mechanistic data interpretation and predictions. We conclude by demonstrating concrete applications of our work through several use cases and highlight new testable hypotheses.
169
Citation5
0
Save
38

The IMEx Coronavirus interactome: an evolving map of Coronaviridae-Host molecular interactions

Livia Perfetto et al.Oct 24, 2023
+17
N
C
L
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spurred a wave of research of nearly unprecedented scale. Among the different strategies that are being used to understand the disease and develop effective treatments, the study of physical molecular interactions enables studying fine-grained resolution of the mechanisms behind the virus biology and the human organism response. Here we present a curated dataset of physical molecular interactions, manually extracted by IMEx Consortium curators focused on proteins from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family. Currently, the dataset comprises over 2,200 binarized interactions extracted from 86 publications. The dataset can be accessed in the standard formats recommended by the Proteomics Standards Initiative (HUPO-PSI) at the IntAct database website ( www.ebi.ac.uk/intact ), and will be continuously updated as research on COVID-19 progresses.
38
Citation4
0
Save
1

Exploring Leishmania-Host Interaction with Reactome, a Database of Biological Pathways and Processes

Julieth Murillo et al.Oct 24, 2023
H
M
B
J
Abstract Leishmaniasis is a parasitic disease with a wide range of clinical manifestations. Multiple aspects of the Leishmania -host interaction, such as genetic factors and modulation of microbicidal functions in host cells, influence pathogenesis, disease severity and treatment outcome. How do scientists contend with this complexity? Here, we work towards representing detailed, contextual knowledge on Leishmania -host interactions in the Reactome pathway database to facilitate the extraction of novel mechanistic insights from existing datasets. The Reactome database uses a hierarchy of abstractions that allows for the incorporation of detailed contextual knowledge on biological processes matched to differentially expressed genes. It also includes tools for enhanced over-representation analysis that exploits this extra information. We conducted a systematic curation of published studies documenting different aspects of the Leishmania -host interaction. The “ Leishmania infection pathway” included four sub-pathways: phagocytosis, killing mechanisms, cell recruitment, and Leishmania parasite growth and survival. As proof-of-principle of the usefulness of the released pathway, we used it to analyze two previously released transcriptomic datasets of human and murine macrophages infected with Leishmania . Our results provide insights on the participation of ADORA2B signaling pathway in the modulation of IL10 and IL6 in infected macrophages. This work opens the way for other researchers to contribute to, and make use of, the Reactome database. Importance Leishmaniasis is a neglected disease infectious disease which affects more than 1.5 million people annually. Many researchers in the field apply -omic technologies to dissect the basis of clinical and therapeutic outcomes and access drug targetable features in the host-parasite interaction, among others. However, getting mechanistic insights from -omics data to such end is not an easy task. The most common approach is to use the -omics data to inquire pathways databases. The retrieved list of pathways often contains vague names that lack the biological context. In this study, we worked to create the Leishmania infection pathway in the Reactome database. With two practical examples from transcriptomics and microarray data, we demonstrated how this pathway facilitates the analysis of such data. In both datasets, we found a common mechanism of IL10 and IL6 production that the authors did not advert in their previous analysis, providing proof-of-principle of the tool’s enhanced potential for knowledge extraction. Leishmania infection pathway is in its first version, and must be expanded to cover the current knowledge base of the Leishmania -host interaction. We strongly encourage contributions from domain experts for the completion of Leishmania infection pathways.
1
Citation1
0
Save
0

Omics Discovery Index - Discovering and Linking Public Omics Datasets

Yasset Pérez‐Riverol et al.May 7, 2020
+23
F
M
Y
Biomedical data, in particular omics datasets are being generated at an unprecedented rate. This is due to the falling costs of generating experimental data, improved accuracy and better accessibility to different omics platforms such as genomics, proteomics and metabolomics. As a result, the number of deposited datasets in public repositories originating from various omics approaches has increased dramatically in recent years. This increase in public data deposition of omics results is a good starting point, but opens up a series of new challenges. For example the research community must now find more efficient ways for storing, organizing and providing access to biomedical data across platforms. These challenges range from achieving a common representation framework for the datasets and the associated metadata from different omics fields, to the availability of efficient methods, protocols and file formats for data exchange between multiple repositories. Therefore, there is a great need for development of new platforms and applications to make possible to search datasets across different omics fields, making such information accessible to the end-user. In this context, we introduce the Omics Discovery Index (OmicsDI - http://www.ebi.ac.uk/Tools/omicsdi), an integrated and open source platform facilitating the access and dissemination of omics datasets. OmicsDI provides a unique infrastructure to integrate datasets coming from multiple omics studies, including at present proteomics, genomics and metabolomics, as a distributed resource.
0

Capturing variation impact on molecular interactions: the IMEx Consortium mutations data set

Noemi del-Toro et al.May 7, 2020
+13
M
M
N
The current wealth of genomic variation data identified at the nucleotide level has provided us with the challenge of understanding by which mechanisms amino acid variation affects cellular processes. These effects may manifest as distinct phenotypic differences between individuals or result in the development of disease. Physical interactions between molecules are the linking steps underlying most, if not all, cellular processes. Understanding the effects that amino acid variation of a molecule's sequence has on its molecular interactions is a key step towards connecting a full mechanistic characterization of nonsynonymous variation to cellular phenotype. Here we present an open access resource created by IMEx database curators over 14 years, featuring 28,000 annotations fully describing the effect of individual point sequence changes on physical protein interactions. We describe how this resource was built, the formats in which the data content is provided and offer a descriptive analysis of the data set. The data set is publicly available through the IntAct website at www.ebi.ac.uk/intact/resources/datasets#mutationDs and is being enhanced with every 4-weekly release.
0

ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis

Johannes Griss et al.May 7, 2020
+3
K
G
J
Pathway analyses are key methods to analyse 'omics experiments. Nevertheless, integrating data from different 'omics technologies and different species still requires considerable bioinformatics knowledge. Here we present the novel ReactomeGSA resource for comparative pathway analyses of multi-omics datasets. ReactomeGSA can be used through Reactome's existing web interface and the novel ReactomeGSA R Bioconductor package with explicit support for scRNA-seq data. Data from different species is automatically mapped to a common pathway space. Public data from ExpressionAtlas and Single Cell ExpressionAtlas can be directly integrated in the analysis. ReactomeGSA thereby greatly reduces the technical barrier for multi-omics, cross-species, comparative pathway analyses. We used ReactomeGSA to characterise the role of B cells in anti-tumour immunity. We compared B cell rich and poor human cancer samples from five TCGA transcriptomics and two CPTAC proteomics studies. There, B cell-rich lung adenocarcinoma samples lack the otherwise present activation through NFkappaB. This may be linked to the presence of a specific subset of tumour associated IgG+ plasma cells that lack NFkappaB activation in scRNA-seq data from human melanoma. This showcases how ReactomeGSA can derive novel biomedical insights by integrating large multi-omics datasets.### Competing Interest StatementThe authors have declared no competing interest.
49

Network expansion of genetic associations defines a pleiotropy map of human cell biology

Inigo Barrio-Hernandez et al.Oct 24, 2023
+9
A
J
I
Abstract Proteins that interact within molecular networks tend to have similar functions and when perturbed influence the same organismal traits. Interaction networks can be used to expand the list of likely trait associated genes from genome-wide association studies (GWAS). Here, we used improvements in SNP-to-gene mapping to perform network based expansion of trait associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share a common genetic basis as well as the biological processes underlying this. We identified 73 pleiotropic gene modules linked to multiple traits that are enriched in genes involved in processes such as protein ubiquitination and RNA processing. We show examples of modules linked to human diseases enriched in genes with pathogenic variants found in patients or relevant mouse knock-out phenotypes and can be used to map targets of approved drugs for repurposing opportunities. Finally, we illustrate the use of the network expansion scores to study genes at inflammatory bowel disease (IBD) GWAS loci, and implicate IBD-relevant genes with strong functional and genetic support.
Load More