NS
Nikolaus Sonnenschein
Author with expertise in Metabolic Engineering and Synthetic Biology
Novo Nordisk Foundation, Technical University of Denmark, Swansea University
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(75% Open Access)
Cited by:
394
h-index:
22
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).
0

Memote: A community driven effort towards a standardized genome-scale metabolic model test suite

Christian Lieven et al.May 6, 2020
+61
B
M
C
Abstract Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote ( https://github.com/opencobra/memote ) an open-source software containing a community-maintained, standardized set of me tabolic mo del te sts. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model’s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.
10

Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0

Iván Domenzain et al.Oct 24, 2023
+7
M
B
I
Abstract Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration of the relation between genotype and phenotype. Streamlined integration of enzyme constraints and proteomics data into GEMs was first enabled by the GECKO method, allowing the study of phenotypes constrained by protein limitations. Here, we upgraded the GECKO toolbox in order to enhance models with enzyme and proteomics constraints for any organism with an available GEM reconstruction. With this, enzyme-constrained models (ecModels) for the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus were generated, aiming to study their long-term adaptation to several stress factors by incorporation of proteomics data. Predictions revealed that upregulation and high saturation of enzymes in amino acid metabolism were found to be common across organisms and conditions, suggesting the relevance of metabolic robustness in contrast to optimal protein utilization as a cellular objective for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO was further developed by the implementation of an automated framework for continuous and version-controlled update of ecModels, which was validated by producing additional high-quality ecModels for Escherichia coli and Homo sapiens. These efforts aim to facilitate the utilization of ecModels in basic science, metabolic engineering and synthetic biology purposes.
10
Citation17
0
Save
1

Publisher Correction: MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
1

Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies

Ibrahim Elsemman et al.Oct 24, 2023
+12
P
A
I
When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here we developed a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions (16304 reactions in total). The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data revealed that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation - known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimization, providing a framework to understand metabolic adaptation in eukaryal cells.
0

Expanding the genome information on Bacillales for biosynthetic gene cluster discovery

Lijie Song et al.May 28, 2024
+10
X
L
L
This study showcases 121 new genomes of spore-forming Bacillales from strains collected globally from a variety of habitats, assembled using Oxford Nanopore long-read and MGI short-read sequences. Bacilli are renowned for their capacity to produce diverse secondary metabolites with use in agriculture, biotechnology, and medicine. These secondary metabolites are encoded within biosynthetic gene clusters (smBGCs). smBGCs have significant research interest due to their potential for the discovery of new bioactivate compounds. Our dataset includes 62 complete genomes, 2 at chromosome level, and 57 at contig level, covering a genomic size range from 3.50 Mb to 7.15 Mb. Phylotaxonomic analysis revealed that these genomes span 16 genera, with 69 of them belonging to Bacillus. A total of 1,176 predicted BGCs were identified by in silico genome mining. We anticipate that the open-access data presented here will expand the reported genomic information of spore-forming Bacillales and facilitate a deeper understanding of the genetic basis of Bacillales potential for secondary metabolite production.
0

A genome-scale metabolic model for Methylococcus capsulatus predicts reduced efficiency uphill electron transfer to pMMO.

Christian Lieven et al.May 7, 2020
+3
S
L
C
Background: Genome-scale metabolic models allow researchers to calculate yields, to predict consumption and production rates, and to study the effect of genetic modifications in silico, without running resource-intensive experiments. While these models have become an invaluable tool for optimizing industrial production hosts like E. coli and S. cerevisiae, few such models exist for one-carbon (C1) metabolizers. Results: Here we present a genome-scale metabolic model for Methylococcus capsulatus, a well-studied obligate methanotroph, which has been used as a production strain of single cell protein (SCP). The model was manually curated, and spans a total of 877 metabolites connected via 898 reactions. The inclusion of 730 genes and comprehensive annotations, make this model not only a useful tool for modeling metabolic physiology, but also a centralized knowledge base for M. capsulatus. With it, we determined that oxidation of methane by the particulate methane monooxygenase is most likely driven through uphill electron transfer operating at reduced efficiency as this scenario matches best with experimental data from literature. Conclusions: The metabolic model will serve the ongoing fundamental research of C1 metabolism, and pave the way for rational strain design strategies towards improved SCP production processes in M. capsulatus.
0

Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories

João Cardoso et al.May 7, 2020
+7
C
K
J
Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, for the majority of these methods' implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables in silico design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knock-out, knock-in, over-expression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated website including documentation, examples, and installation instructions can be found at http://cameo.bio. Users can also give cameo a try at http://try.cameo.bio.
1

Literate programming for iterative design-build-test-learn cycles in bioengineering

Søren Petersen et al.Oct 24, 2023
+9
C
L
S
Abstract Synthetic biology dictates the data-driven engineering of biocatalysis, cellular functions, and organism behavior. Integral to synthetic biology is the aspiration to efficiently find, access, interoperate, and reuse high-quality data on genotype-phenotype relationships of native and engineered biosystems under FAIR principles, and from this facilitate forward-engineering strategies. However, biology is complex at the regulatory level, and noisy at the operational level, thus necessitating systematic and diligent data handling at all levels of the design, build, and test phases in order to maximize learning in the iterative design-build-test-learn engineering cycle. To enable user-friendly simulation, organization, and guidance for the engineering of complex biosystems, we have developed an open-source python-based computer-aided design and analysis platform operating under a literate programming user-interface hosted on Github. The platform is called teemi and is fully compliant with FAIR principles. In this study we apply teemi for i) designing and simulating bioengineering, ii) integrating and analyzing multivariate datasets, and iii) machine-learning for predictive engineering of a metabolic pathway designs for production of a key precursor to medicinal alkaloids. The teemi platform is publicly available at PyPi and GitHub .
3

Probing efficient microbial CO2utilization through metabolic and process modeling

Philip Vries et al.Oct 24, 2023
+2
N
V
P
Abstract Microbial gas fermentation is proving to be a promising technology to upcycle carbon-rich waste gasses into value-added biochemicals, though production yields of varied products are currently limited. Through the holistic pairing of process modeling with host agnostic black box metabolic modeling, here we investigate an efficient thermophilic CO 2 upcycling process, based on acetogenic carbon utilization. From a process engineering perspective, higher temperatures were found to favor overall gas transfer rates, even with lower gas solubility, particularly for the more expensive and often limiting H 2 gas. Metabolically, for growth coupled products, thermophilic production favors higher product yields as a result of a higher maintenance energy input. A process simulation for acetate production in a large-scale bubble column reactor predicts an optimal feed gas composition of approximately 9:1 mol H 2 to mol CO 2 and a process with higher production yields and rates at higher temperatures. To assess the expansion of the product portfolio beyond acetate, both a product volatility analysis and a metabolic pathway model were implemented. In-situ recovery of volatile products is shown to be within range for acetone but challenging due to the extensive evaporation of water, while the production of more valuable compounds is energetically unfavorable compared to acetate. We discuss alternative approaches to overcome these challenges to utilize acetogenic CO 2 fixation for the production of a wider range of carbon negative chemicals.
Load More