VM
Vikram Mulligan
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
2,695
h-index:
26
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules

Hahnbeom Park et al.Oct 21, 2016
Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking have been parametrized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties.
0

Accurate de novo design of hyperstable constrained peptides

Gaurav Bhardwaj et al.Sep 13, 2016
Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18–47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N–C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs. Computational methods for the de novo design of conformationally restricted peptides produce exceptionally stable short peptides stabilized by backbone cyclization and/or internal disulfide bonds that are promising starting points for a new generation of peptide-based drugs. Natural peptides constrained with covalent crosslinks—intermediate in size between proteins and small molecules—can be especially potent, pharmacologically active compounds. Their shapes have evolved to fit precisely into the binding pockets on their targets. David Baker and colleagues present computational methods for the de novo design of such conformationally restricted peptides with different shapes, and use the methods to produce short peptide motifs stabilized by backbone cyclization and/or internal disulfide bonds that are shown to be exceptionally stable. The computational design methods and stable scaffolds generated provide a promising starting point for the development of a new generation of peptide-based drugs.
4

Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Julia Leman et al.Apr 5, 2021
Abstract Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.
4
Citation3
0
Save
6

XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers

Jack Maguire et al.May 5, 2021
Abstract Graph representations are traditionally used to represent protein structures in sequence design protocols where the folding pattern is known. This infrequently extends to machine learning projects: existing graph convolution algorithms have shortcomings when representing protein environments. One reason for this is the lack of emphasis on edge attributes during massage-passing operations. Another reason is the traditionally shallow nature of graph neural network architectures. Here we introduce an improved message-passing operation that is better equipped to model local kinematics problems such as protein design. Our approach, XENet, pays special attention to both incoming and outgoing edge attributes. We compare XENet against existing graph convolutions in an attempt to decrease rotamer sample counts in Rosetta’s rotamer substitution protocol. This use case is motivating because it allows larger protein design problems to fit onto near-term quantum computers. XENet outperformed competing models while also displaying a greater tolerance for deeper architectures. We found that XENet was able to decrease rotamer counts by 40% without loss in quality. This decreased the problem size of our use case by more than a factor of 3. Additionally, XENet displayed an ability to handle deeper architectures than competing convolutions. Author summary Graphs data structures are ubiquitous in the field of protein design and are at the core of the recent advances in artificial intelligence brought forth by graph neural networks (GNNs). GNNs have led to some impressive results in modeling protein interactions, but are not as common as other tensor representations. Most GNN architectures tend to put little to no emphasis on the information stored on edges; however, protein modeling tools often use edges to represent vital geometric relationships about residue pair interactions. In this paper, we show that a more advanced processing of edge attributes can lead to considerable benefits when modeling chemical data. We introduce XENet, a new member of the GNN family that is shown to have improved ability to model protein residue environments based on chemical and geometric data. We use XENet to intelligently simplify the optimization problem that is solved when designing proteins. This task is important to us and others because it allows larger proteins to be designed on near-term quantum computers. We show that XENet is able to train on our protein modeling data better than existing methods, successfully resulting in a dramatic decrease in protein design sample space with no loss in quality.
6
Citation2
0
Save
0

Heuristic energy-based cyclic peptide design

Qiyao Zhu et al.Jul 4, 2024
Rational computational design is crucial to the pursuit of novel drugs and therapeutic agents. Meso-scale cyclic peptides, which consist of 7-40 amino acid residues, are of particular interest due to their conformational rigidity, binding specificity, degradation resistance, and potential cell permeability. Because there are few natural cyclic peptides, de novo design involving non-canonical amino acids is a potentially useful goal. Here, we develop an efficient pipeline (CyclicChamp) for cyclic peptide design. After converting the cyclic constraint into an error function, we employ a variant of simulated annealing to search for low-energy peptide backbones while maintaining peptide closure. Compared to the previous random sampling approach, which was capable of sampling conformations of cyclic peptides of up to 14 residues, our method both greatly accelerates the computation speed for sampling conformations of small macrocycles ( ca. 7 residues), and addresses the high-dimensionality challenge that large macrocycle designs often encounter. As a result, CyclicChamp makes conformational sampling tractable for 15- to 24-residue cyclic peptides, thus permitting the design of macrocycles in this size range. Microsecond-length molecular dynamics simulations on the resulting 15, 20, and 24 amino acid cyclic designs identify trajectories with kinetic stability. To test their thermodynamic stability, we perform additional replica exchange molecular dynamics simulations and generate free energy surfaces. Two 15-residue designs and one 20-residue design emerge as promising candidates, along with one viable 24-residue candidate.
0

Designing Peptides on a Quantum Computer

Vikram Mulligan et al.Sep 2, 2019
Although a wide variety of quantum computers are currently being developed, actual computational results have been largely restricted to contrived, artificial tasks. Finding ways to apply quantum computers to useful, real-world computational tasks remains an active research area. Here we describe our mapping of the protein design problem to the D-Wave quantum annealer. We present a system whereby Rosetta, a state-of-the-art protein design software suite, interfaces with the D-Wave quantum processing unit to find amino acid side chain identities and conformations to stabilize a fixed protein backbone. Our approach, which we call the QPacker , uses a large side-chain rotamer library and the full Rosetta energy function, and in no way reduces the design task to a simpler format. We demonstrate that quantum annealer-based design can be applied to complex real-world design tasks, producing designed molecules comparable to those produced by widely adopted classical design approaches. We also show through large-scale classical folding simulations that the results produced on the quantum annealer can inform wet-lab experiments. For design tasks that scale exponentially on classical computers, the QPacker achieves nearly constant runtime performance over the range of problem sizes that could be tested. We anticipate better than classical performance scaling as quantum computers mature.