FR
François Rheault
Author with expertise in Diffusion Magnetic Resonance Imaging
Université de Sherbrooke, Vanderbilt University, Medical University of Graz
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(65% Open Access)
Cited by:
62
h-index:
21
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
152

Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?

Kurt Schilling et al.Oct 24, 2023
+138
L
F
K
Abstract White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
152
Citation16
0
Save
54

Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography

Colin Hansen et al.Oct 24, 2023
+16
I
Q
C
Abstract Brain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate “regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and segmentation.
54
Citation9
0
Save
3

TractoFlow-ABS (Atlas-Based Segmentation)

Guillaume Theaud et al.Oct 24, 2023
+3
A
J
G
Abstract In Diffusion MRI (dMRI), pathological brains are a challenge for tractography processing, where most pipelines are not are not robust to white matter lesions. Intensity of white matter lesions on T1 images can have similar contrasts to gray matter tissue, which leads to misclassifications or “holes” in the white matter mask. These holes produce premature stop for tracking algorithms. To handle these issues, we developed TractoFlow-ABS ( A tlas- B ased S egmentation). TractoFlow-ABS uses the Freesurfer atlas to compute tissue masks instead of FSL fast in standard TractoFlow . TractoFlow-ABS is therefore a derived version of TractoFlow that is robust to white matter anomalies such as hyperintensities and lesions.
3
Citation6
0
Save
1

MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging

Leon Cai et al.Oct 24, 2023
+16
P
Q
L
ABSTRACT Purpose Diffusion weighted imaging (DWI) allows investigators to identify structural, microstructural, and connectivitybased differences between subjects, but variability due to session and scanner biases is a challenge. Methods To investigate DWI variability, we present MASiVar, a multisite dataset consisting of 319 diffusion scans acquired at 3T from b = 1000 to 3000 s/mm 2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified dataset. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy (FA), mean diffusivity, and principal eigenvector; region-wise cerebral spinal fluid volume fraction, intracellular volume fraction, and orientation dispersion index; bundle-wise shape, volume, FA, and length; and whole connectome correlation and maximized modularity, global efficiency, and characteristic path length. Results We plot the variability in these measures at each level and find that it consistently increases with intrasession to intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner variability can approach intersubject variability. Conclusions This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple levels and processing approaches simultaneously and suggests harmonization between scanners for multisite analyses should be considered prior to inference of group differences on subjects.
1
Citation6
0
Save
23

Prevalence of white matter pathways coming into a single diffusion MRI voxel orientation: the bottleneck issue in tractography

Schilling Kg et al.Oct 24, 2023
+4
F
T
S
Abstract Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called “crossing fiber problem” has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called “bottleneck” regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered “single fiber voxels” often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.
23
Citation5
0
Save
14

Superficial white matter across the lifespan: volume, thickness, change, and relationship with cortical features

Kurt Schilling et al.Oct 24, 2023
+8
F
D
K
Abstract Superficial white matter (SWM) represents a significantly understudied part of the human brain, despite comprising a large portion of brain volume and making up a majority of cortical structural connections. Using multiple, high-quality, datasets with large sample sizes (N=2421, age range 5-100) in combination with methodological advances in tractography, we quantified features of SWM volume and thickness across the brain and across the lifespan. We address four questions: (1) How does U-fiber volume change with age? (2) What does U-fiber thickness look like across the brain? (3) How does SWM thickness change with age? (4) Are there relationships between SWM thickness and cortical features? Our main findings are that (1) SWM volume shows unique volumetric trajectories with age that are distinct from gray matter and other white matter trajectories; (2) SWM thickness varies across the brain, with patterns robust across individuals and across the population at the region-level and vertex-level; (3) SWM shows nonlinear changes across the lifespan that vary across regions; and (4) SWM thickness is associated with cortical thickness and curvature. For the first time, we show that SWM volume follows a similar trend as overall white matter volume, peaking at a similar time in adolescence, leveling off throughout adulthood, and decreasing with age thereafter. Notably, the relative fraction of total brain volume of SWM continuously increases with age, and consequently takes up a larger proportion of total white matter volume, unlike the other tissue types that decrease with respect to total brain volume. This study represents the first characterization of SWM features across the lifespan and provides the background for characterizing normal aging and insight into the mechanisms associated with SWM development and decline.
14
Citation5
0
Save
29

Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow

Kurt Schilling et al.Oct 24, 2023
+6
F
C
K
Abstract When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
29
Paper
Citation4
0
Save
5

Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1,184 participants

Kurt Schilling et al.Oct 24, 2023
+14
F
D
K
Abstract Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal datasets totaling in 1184 subjects and 2236 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging dataset, Cambridge Centre for Ageing Neuroscience dataset, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could have widespread implications for a variety of neurodegenerative disorders.
5
Citation4
0
Save
0

A population-based atlas of the human pyramidal tract in 410 healthy participants

Quentin Chenot et al.May 7, 2020
+8
F
N
Q
Abstract With the advances in diffusion MRI and tractography, numerous atlases of the human pyramidal tract (PyT) have been proposed but the inherent limitation of tractography to resolve crossing bundles within the centrum semiovale have so far prevented the complete description of the most lateral PyT projections. Here, we combined a precise manual positioning of individual subcortical regions of interest along the descending pathway of the PyT with a new bundle-specific tractography algorithm. This later is based on anatomical priors to improve streamlines tracking in crossing areas. We then extracted both left and right PyT in a large cohort of 410 healthy participants and built a population-based atlas of the whole-fanning PyT with a complete description of its most cortico-lateral projections. Clinical applications are envisaged, the whole-fanning PyT atlas being likely a better marker of corticospinal integrity metrics than those currently used within the frame of prediction of post-stroke motor recovery. The present population-based PyT, freely available, provides an interesting tool for clinical applications in order to locate specific PyT damage and its impact to the short and long-term motor recovery after stroke.
0
Citation3
0
Save
25

TractoInferno: A large-scale, open-source, multi-site database for machine learning dMRI tractography

Philippe Poulin et al.Oct 24, 2023
+7
F
G
P
Abstract TractoInferno is the world’s largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 datasets acquired from 3T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase TractoInferno by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the TractoInferno database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, TractoInferno is an excellent tool to address common issues in machine learning tractography.
Load More