AL
Alexander Leemans
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(51% Open Access)
Cited by:
8,487
h-index:
70
/
i10-index:
221
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Microstructural maturation of the human brain from childhood to adulthood

Catherine Lebel et al.Jan 12, 2008
Brain maturation is a complex process that continues well beyond infancy, and adolescence is thought to be a key period of brain rewiring. To assess structural brain maturation from childhood to adulthood, we charted brain development in subjects aged 5 to 30 years using diffusion tensor magnetic resonance imaging, a novel brain imaging technique that is sensitive to axonal packing and myelination and is particularly adept at virtually extracting white matter connections. Age-related changes were seen in major white matter tracts, deep gray matter, and subcortical white matter, in our large (n = 202), age-distributed sample. These diffusion changes followed an exponential pattern of maturation with considerable regional variation. Differences observed in developmental timing suggest a pattern of maturation in which areas with fronto-temporal connections develop more slowly than other regions. These in vivo results expand upon previous postmortem and imaging studies and provide quantitative measures indicative of the progression and magnitude of regional human brain maturation.
0

Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging

Ben Jeurissen et al.May 19, 2012
It has long been recognized that the diffusion tensor model is inappropriate to characterize complex fiber architecture, causing tensor‐derived measures such as the primary eigenvector and fractional anisotropy to be unreliable or misleading in these regions. There is however still debate about the impact of this problem in practice. A recent study using a Bayesian automatic relevance detection (ARD) multicompartment model suggested that a third of white matter (WM) voxels contain crossing fibers, a value that, whilst already significant, is likely to be an underestimate. The aim of this study is to provide more robust estimates of the proportion of affected voxels, the number of fiber orientations within each WM voxel, and the impact on tensor‐derived analyses, using large, high‐quality diffusion‐weighted data sets, with reconstruction parameters optimized specifically for this task. Two reconstruction algorithms were used: constrained spherical deconvolution (CSD), and the ARD method used in the previous study. We estimate the proportion of WM voxels containing crossing fibers to be ∼90% (using CSD) and 63% (using ARD). Both these values are much higher than previously reported, strongly suggesting that the diffusion tensor model is inadequate in the vast majority of WM regions. This has serious implications for downstream processing applications that depend on this model, particularly tractography, and the interpretation of anisotropy and radial/axial diffusivity measures. Hum Brain Mapp 34:2747–2766, 2013. © 2012 Wiley Periodicals, Inc.
0

Topological correlations of structural and functional networks in patients with traumatic brain injury

Karen Caeyenberghs et al.Jan 1, 2013
Despite an increasing amount of specific correlation studies between structural and functional connectivity, there is still a need for combined studies, especially in pathological conditions. Impairments of brain white matter (WM) and diffuse axonal injuries are commonly suspected to be responsible for the disconnection hypothesis in traumatic brain injury (TBI) patients. Moreover, our previous research on TBI patients shows a strong relationship between abnormalities in topological organization of brain networks and behavioral deficits. In this study, we combined task-related functional connectivity (using event-related fMRI) with structural connectivity (derived from fiber tractography using diffusion MRI data) estimates in the same participants (17 adults with TBI and 16 controls), allowing for direct comparison between graph metrics of the different imaging modalities. Connectivity matrices were computed covering the switching motor network, which includes the basal ganglia, anterior cingulate cortex/supplementary motor area, and anterior insula/inferior frontal gyrus. The edges constituting this network consisted of the partial correlations between the fMRI time series from each node of the switching motor network. The interregional anatomical connections between the switching-related areas were determined using the fiber tractography results. We found that graph metrics and hubs obtained showed no agreement in both groups. The topological properties of brain functional networks could not be solely accounted for by the properties of the underlying structural networks. However, combining complementary information from both imaging modalities could improve accuracy in prediction of switching performance. Direct comparison between functional task-related and anatomical structural connectivity, presented here for the first time in TBI patients, links two powerful approaches to map the patterns of brain connectivity that may underlie behavioral deficits in brain-injured patients.
0
Paper
Citation461
0
Save
0

Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls

Jelle Veraart et al.May 16, 2013
Linear least squares estimators are widely used in diffusion MRI for the estimation of diffusion parameters. Although adding proper weights is necessary to increase the precision of these linear estimators, there is no consensus on how to practically define them. In this study, the impact of the commonly used weighting strategies on the accuracy and precision of linear diffusion parameter estimators is evaluated and compared with the nonlinear least squares estimation approach. Simulation and real data experiments were done to study the performance of the weighted linear least squares estimators with weights defined by (a) the squares of the respective noisy diffusion-weighted signals; and (b) the squares of the predicted signals, which are reconstructed from a previous estimate of the diffusion model parameters. The negative effect of weighting strategy (a) on the accuracy of the estimator was surprisingly high. Multi-step weighting strategies yield better performance and, in some cases, even outperformed the nonlinear least squares estimator. If proper weighting strategies are applied, the weighted linear least squares approach shows high performance characteristics in terms of accuracy/precision and may even be preferred over nonlinear estimation methods.
0

Methodological considerations on tract-based spatial statistics (TBSS)

Michael Bach et al.Jun 16, 2014
Having gained a tremendous amount of popularity since its introduction in 2006, tract-based spatial statistics (TBSS) can now be considered as the standard approach for voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data. Aiming to improve the sensitivity, objectivity, and interpretability of multi-subject DTI studies, TBSS includes a skeletonization step that alleviates residual image misalignment and obviates the need for data smoothing. Although TBSS represents an elegant and user-friendly framework that tackles numerous concerns existing in conventional VBA methods, it has limitations of its own, some of which have already been detailed in recent literature. In this work, we present general methodological considerations on TBSS and report on pitfalls that have not been described previously. In particular, we have identified specific assumptions of TBSS that may not be satisfied under typical conditions. Moreover, we demonstrate that the existence of such violations can severely affect the reliability of TBSS results. With TBSS being used increasingly, it is of paramount importance to acquaint TBSS users with these concerns, such that a well-informed decision can be made as to whether and how to pursue a TBSS analysis. Finally, in addition to raising awareness by providing our new insights, we provide constructive suggestions that could improve the validity and increase the impact of TBSS drastically.
0

Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution

Ben Jeurissen et al.May 27, 2010
Abstract Constrained spherical deconvolution (CSD) is a new technique that, based on high‐angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractography. The noisy nature of diffusion‐weighted (DW) images, however, affects the estimated orientations and the resulting fiber trajectories will be subject to uncertainty. The impact of noise can be large, especially for HARDI measurements, which employ relatively high b ‐values. To quantify the effects of noise on fiber trajectories, probabilistic tractography was introduced, which considers multiple possible pathways emanating from one seed point, taking into account the uncertainty of local fiber orientations. In this work, a probabilistic tractography algorithm is presented based on CSD and the residual bootstrap. CSD, which provides accurate and precise estimates of multiple fiber orientations, is used to extract the local fiber orientations. The residual bootstrap is used to estimate fiber tract probability within a clinical time frame, without prior assumptions about the form of uncertainty in the data. By means of Monte Carlo simulations, the performance of the CSD fiber pathway uncertainty estimator is measured in terms of accuracy and precision. In addition, the performance of the proposed method is compared to state‐of‐the‐art DTI residual bootstrap tractography and to an existing probabilistic CSD tractography algorithm using clinical DW data. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.
Load More