AB
Arnaud Boré
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
1,348
h-index:
20
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Clustering and temporal organization of sleep spindles underlie motor memory consolidation

Arnaud Boutin et al.Nov 29, 2022
Abstract Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain controversial. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles’ clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.
25

TractoInferno: A large-scale, open-source, multi-site database for machine learning dMRI tractography

Philippe Poulin et al.Nov 30, 2021
Abstract TractoInferno is the world’s largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 datasets acquired from 3T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase TractoInferno by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the TractoInferno database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, TractoInferno is an excellent tool to address common issues in machine learning tractography.
0

TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity

Guillaume Theaud et al.May 9, 2019
A diffusion MRI (dMRI) tractography processing pipeline should be: i) reproducible in immediate test-test, ii) reproducible in time, iii) efficient and iv) easy to use. Two runs of the same processing pipeline with the same input data should give the same output today, tomorrow and in 2 years. However, processing dMRI data requires a large number of steps (20+ steps) that, at this time, may not be reproducible between runs or over time. If parameters such as the number of threads or the random number generator are not carefully set in the brain extraction, registration and fiber tracking steps, the end tractography results obtained can be far from reproducible and limit brain connectivity studies. Moreover, processing can take several hours to days of computation for a large database, even more so if the steps are running sequentially. To handle these issues, we present TractoFlow, a fully automated pipeline that processes datasets from the raw diffusion weighted images (DWI) to tractography. It also outputs classical diffusion tensor imaging measures (fractional anisotropy (FA) and diffusivities) and several HARDI measures (Number of Fiber Orientation (NuFO), Apparent Fiber Density (AFD)). The pipeline requires a DWI and T1-weighted image as NIfTI files and b-values/b-vectors in FSL format. An optional reversed phase encoded b=0 image can also be used. This pipeline is based on two technologies: Nextflow and Singularity, as well as recommended pre-processing and processing steps from the dMRI community. In this work, the TractoFlow pipeline is evaluated on three databases and shown to be efficient and reproducible from 98% to 100% depending on parameter choices. For example, 105 subjects from the Human Connectome Project (HCP) were fully ran in twenty-five (25) hours to produce, for each subject, a whole-brain tractogram with 4 million streamlines. The contribution of this paper is to introduce the importance of a robust pipeline in terms of runtime and reproducibility over time. In the era of open data and open science, efficiency and reproducibility is critical in neuroimaging projects. Our TractoFlow pipeline is publicly available for academic research and is an important step forward for better structural brain connectivity mapping.
0

Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers

Mathieu Boudreau et al.Jan 1, 2024
Abstract Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used qualitative MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes three years of data collection and up to ten sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, FA, MD, and RD all exhibited high longitudinal reproducibility (intraclass correlation coefficient— ICC ≃ 1 and within-subject coefficient of variations— wCV &lt; 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.