LP
Laurent Petit
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(59% Open Access)
Cited by:
4,360
h-index:
51
/
i10-index:
88
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical networks for working memory and executive functions sustain the conscious resting state in man

Bernard Mazoyer et al.Feb 1, 2001
The cortical anatomy of the conscious resting state (REST) was investigated using a meta-analysis of nine positron emission tomography (PET) activation protocols that dealt with different cognitive tasks but shared REST as a common control state. During REST, subjects were in darkness and silence, and were instructed to relax, refrain from moving, and avoid systematic thoughts. Each protocol contrasted REST to a different cognitive task consisting either of language, mental imagery, mental calculation, reasoning, finger movement, or spatial working memory, using either auditory, visual or no stimulus delivery, and requiring either vocal, motor or no output. A total of 63 subjects and 370 spatially normalized PET scans were entered in the meta-analysis. Conjunction analysis revealed a network of brain areas jointly activated during conscious REST as compared to the nine cognitive tasks, including the bilateral angular gyrus, the left anterior precuneus and posterior cingulate cortex, the left medial frontal and anterior cingulate cortex, the left superior and medial frontal sulcus, and the left inferior frontal cortex. These results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions, working under the supervision of an executive left prefrontal network.
0

What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing?

Mathieu Vigneau et al.Jul 24, 2010
To evaluate the relative role of left and right hemispheres (RH) and describe the functional anatomy of RH during ortholinguistic tasks, we re-analyzed the 128 papers of a former left-hemisphere (LH) meta-analysis (Vigneau et al., 2006). Of these, 59 articles reported RH participation, providing 105 RH language contrasts including 218 peaks compared to 728 on the left, a proportion reflecting the LH language dominance. To describe inter-hemispheric interactions, in each of the language contrasts involving both hemispheres, we distinguished between unilateral and bilateral peaks, i.e. having homotopic activation in the LH in the same contrast. We also calculated the proportion of bilateral peaks in the LH. While the majority of LH peaks were unilateral (79%), a reversed pattern was observed in the RH; this demonstrates that, in contrast to the LH, the RH works in an inter-hemispheric manner. To analyze the regional pattern of RH participation, these unilateral and bilateral peaks were spatially clustered for each language component. Most RH phonological clusters corresponded to bilateral recruitment of auditory and motor cortices. Notably, the motor representation of the mouth and phonological working memory areas were exclusively left-lateralized, supporting the idea that the RH does not host phonological representations. Right frontal participation was not specific for the language component involved and appeared related to the recruitment of attentional and working memory areas. The fact that RH participation during lexico-semantic tasks was limited to these executive activations is compatible with the hypothesis that active inhibition is exerted from the LH during the processing of meaning. Only during sentence/text processing tasks a specific unilateral RH-temporal involvement was noted, likely related to context processing. These results are consistent with split-brain studies that found that the RH has a limited lexicon, with no phonological abilities but active involvement in the processing of context.
0
Citation425
0
Save
0

Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness

Bernard Mazoyer et al.Jun 30, 2014
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.
0
Citation323
0
Save
0

Brain activity at rest: a multiscale hierarchical functional organization

Gaëlle Doucet et al.Mar 24, 2011
Spontaneous brain activity was mapped with functional MRI (fMRI) in a sample of 180 subjects while in a conscious resting-state condition. With the use of independent component analysis (ICA) of each individual fMRI signal and classification of the ICA-defined components across subjects, a set of 23 resting-state networks (RNs) was identified. Functional connectivity between each pair of RNs was assessed using temporal correlation analyses in the 0.01- to 0.1-Hz frequency band, and the corresponding set of correlation coefficients was used to obtain a hierarchical clustering of the 23 RNs. At the highest hierarchical level, we found two anticorrelated systems in charge of intrinsic and extrinsic processing, respectively. At a lower level, the intrinsic system appears to be partitioned in three modules that subserve generation of spontaneous thoughts (M1a; default mode), inner maintenance and manipulation of information (M1b), and cognitive control and switching activity (M1c), respectively. The extrinsic system was found to be made of two distinct modules: one including primary somatosensory and auditory areas and the dorsal attentional network (M2a) and the other encompassing the visual areas (M2b). Functional connectivity analyses revealed that M1b played a central role in the functioning of the intrinsic system, whereas M1c seems to mediate exchange of information between the intrinsic and extrinsic systems.
0

AICHA: An atlas of intrinsic connectivity of homotopic areas

Marc Joliot et al.Jul 23, 2015
Atlases of brain anatomical ROIs are widely used for functional MRI data analysis. Recently, it was proposed that an atlas of ROIs derived from a functional brain parcellation could be advantageous, in particular for understanding how different regions share information. However, functional atlases so far proposed do not account for a crucial aspect of cerebral organization, namely homotopy, i.e. that each region in one hemisphere has a homologue in the other hemisphere.We present AICHA (for Atlas of Intrinsic Connectivity of Homotopic Areas), a functional brain ROIs atlas based on resting-state fMRI data acquired in 281 individuals. AICHA ROIs cover the whole cerebrum, each having 1-homogeneity of its constituting voxels intrinsic activity, and 2-a unique homotopic contralateral counterpart with which it has maximal intrinsic connectivity. AICHA was built in 4 steps: (1) estimation of resting-state networks (RSNs) using individual resting-state fMRI independent components, (2) k-means clustering of voxel-wise group level profiles of connectivity, (3) homotopic regional grouping based on maximal inter-hemispheric functional correlation, and (4) ROI labeling.AICHA includes 192 homotopic region pairs (122 gyral, 50 sulcal, and 20 gray nuclei). As an application, we report inter-hemispheric (homotopic and heterotopic) and intra-hemispheric connectivity patterns at different sparsities.ROI functional homogeneity was higher for AICHA than for anatomical ROI atlases, but slightly lower than for another functional ROI atlas not accounting for homotopy.AICHA is ideally suited for intrinsic/effective connectivity analyses, as well as for investigating brain hemispheric specialization.
152

Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?

Kurt Schilling et al.Oct 8, 2020
Abstract White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
11

The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students

Ami Tsuchida et al.Jun 18, 2020
Abstract We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1,870 young healthy adults, aged 18 to 35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1,722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early aging.
23

Prevalence of white matter pathways coming into a single diffusion MRI voxel orientation: the bottleneck issue in tractography

Kurt Schilling et al.Jun 22, 2021
Abstract Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called “crossing fiber problem” has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called “bottleneck” regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered “single fiber voxels” often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.
Load More