AH
Anh Ho
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
3,879
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A mesoscale connectome of the mouse brain

Seung Oh et al.Apr 1, 2014
+31
L
J
S
Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. In mouse, an axonal connectivity map showing the wiring patterns across the entire brain has been created using an EGFP-expressing adeno-associated virus tracing technique, providing the first such whole-brain map for a vertebrate species. With President Barack Obama's BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative now entering year two, this issue of Nature presents two landmark papers that mobilize 'big science' resources to the cause. Hongkui Zeng and colleagues present the first brain-wide, mesoscale connectome for a mammalian species — the laboratory mouse — based on cell-type-specific tracing of axonal projections. The wiring diagram of a complete nervous system has long been available for a small roundworm, but neuronal connectivity data for larger animals has been patchy until now. The new three-dimensional Allen Mouse Brain Connectivity Atlas is a whole-brain connectivity matrix that will provide insights into how brain regions communicate. Much of the data generated in this project will be of relevance to investigations of neural networks in humans and should help to further our understanding of human brain connectivity and its involvement in brain disorders. In a separate report Ed Lein and colleagues present a transcriptional atlas of the mid-gestational human brain at high spatial resolution, based on laser microdissection and DNA microarray technology. The structure and function of the human brain is largely determined by prenatal transcriptional processes that initiate gene expression, but our understanding of the developing brain has been limited. The new data set reveals transcriptional signatures for developmental processes associated with the massive expansion of neocortex during human evolution, and suggests new cortical germinal zones or postmitotic neurons as sites of dynamic expression for many genes associated with neurological or psychiatric disorders.
0

The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas

Quanxin Wang et al.May 1, 2020
+22
Y
S
Q

Summary

 Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 μm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 μm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).
0

Hierarchical organization of cortical and thalamic connectivity

Julie Harris et al.Oct 30, 2019
+39
K
Ş
J
The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource
0
Citation574
0
Save
0

The organization of intracortical connections by layer and cell class in the mouse brain

Julie Harris et al.Apr 1, 2018
+32
C
N
J
Abstract The mammalian cortex is a laminar structure composed of many cell types densely interconnected in complex ways. Recent systematic efforts to map the mouse mesoscale connectome provide comprehensive projection data on interareal connections, but not at the level of specific cell classes or layers within cortical areas. We present here a significant expansion of the Allen Mouse Brain Connectivity Atlas, with ∼1,000 new axonal projection mapping experiments across nearly all isocortical areas in 49 Cre driver lines. Using 13 lines selective for cortical layer-specific projection neuron classes, we identify the differential contribution of each layer/class to the overall intracortical connectivity patterns. We find layer 5 (L5) projection neurons account for essentially all intracortical outputs. L2/3, L4, and L6 neurons contact a subset of the L5 cortical targets. We also describe the most common axon lamination patterns in cortical targets. Most patterns are consistent with previous anatomical rules used to determine hierarchical position between cortical areas (feedforward, feedback), with notable exceptions. While diverse target lamination patterns arise from every source layer/class, L2/3 and L4 neurons are primarily associated with feedforward type projection patterns and L6 with feedback. L5 has both feedforward and feedback projection patterns. Finally, network analyses revealed a modular organization of the intracortical connectome. By labeling interareal and intermodule connections as feedforward or feedback, we present an integrated view of the intracortical connectome as a hierarchical network.
0

Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer’s disease

Jennifer Whitesell et al.Aug 18, 2018
+9
J
A
J
Abstract A variety of Alzheimer’s disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid β (Aβ) and forming plaques However, the degree to which these models mimic spatiotemporal patterns of Aβ deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aβ plaques across ages in three APP-overexpression mouse lines (APP/PS1, Tg2576, hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline. Images were acquired with high resolution serial 2-photon tomography and labeled plaques were detected using custom-built segmentation algorithms. Image series were registered to the Allen Mouse Brain Common Coordinate Framework, a 3D reference atlas, enabling automated brain-wide quantification of plaque density, number, and location. In both APP/PS1 and Tg2576 mice, plaques were identified first in isocortex, followed by olfactory, hippocampal, and cortical subplate areas. In hAPP-J20 mice, plaque density was highest in hippocampal areas, followed by isocortex, with little to no involvement of olfactory or cortical subplate areas. Within the major brain divisions, distinct regions were identified with high (or low) plaque accumulation; e.g. , the lateral visual area within the isocortex of APP/PS1 mice had relatively higher plaque density compared with other cortical areas, while in hAPP-J20 mice, plaques were densest in the ventral retrosplenial cortex. In summary, we show how whole brain imaging of amyloid pathology in mice reveals the extent to which a given model recapitulates the regional Aβ deposition patterns described in AD.
0
Citation6
0
Save
115

Regional, layer, and cell-class specific connectivity of the mouse default mode network

Jennifer Kleponis et al.May 14, 2020
+27
A
J
J
Abstract The evolutionarily conserved default mode network (DMN) is characterized by temporally correlated activity between brain regions during resting states. The DMN has emerged as a selectively vulnerable network in multiple disorders, so understanding its anatomical composition will provide fundamental insight into how its function is impacted by disease. Reproducible rodent analogs of the human DMN offer an opportunity to investigate the underlying brain regions and structural connectivity (SC) with high spatial and cell type resolution. Here, we performed systematic analyses using mouse resting state functional magnetic resonance imaging to identify the DMN and whole brain axonal tracing data, co-registered to the 3D Allen Mouse Common Coordinate Framework reference atlas. We identified the specific, predominantly cortical, brain regions comprising the mouse DMN and report preferential SC between these regions. Next, at the cell class level, we report that cortical layer (L) 2/3 neurons in DMN regions project almost exclusively to other DMN regions, whereas L5 neurons project to targets both in and out of the DMN. We then test the hypothesis that in- and out-DMN projection patterns originate from distinct L5 neuron sub-classes using an intersectional viral tracing strategy to label all the axons from neurons defined by a single target. In the ventral retrosplenial cortex, a core DMN region, we found two L5 projection types related to the DMN and mapped them to unique transcriptomically-defined cell types. Together, our results provide a multi-scale description of the anatomical correlates of the mouse DMN.
115
Citation4
0
Save