MN
Maitham Naeemi
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
1,946
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The organization of intracortical connections by layer and cell class in the mouse brain

Julie Harris et al.Apr 1, 2018
Abstract The mammalian cortex is a laminar structure composed of many cell types densely interconnected in complex ways. Recent systematic efforts to map the mouse mesoscale connectome provide comprehensive projection data on interareal connections, but not at the level of specific cell classes or layers within cortical areas. We present here a significant expansion of the Allen Mouse Brain Connectivity Atlas, with ∼1,000 new axonal projection mapping experiments across nearly all isocortical areas in 49 Cre driver lines. Using 13 lines selective for cortical layer-specific projection neuron classes, we identify the differential contribution of each layer/class to the overall intracortical connectivity patterns. We find layer 5 (L5) projection neurons account for essentially all intracortical outputs. L2/3, L4, and L6 neurons contact a subset of the L5 cortical targets. We also describe the most common axon lamination patterns in cortical targets. Most patterns are consistent with previous anatomical rules used to determine hierarchical position between cortical areas (feedforward, feedback), with notable exceptions. While diverse target lamination patterns arise from every source layer/class, L2/3 and L4 neurons are primarily associated with feedforward type projection patterns and L6 with feedback. L5 has both feedforward and feedback projection patterns. Finally, network analyses revealed a modular organization of the intracortical connectome. By labeling interareal and intermodule connections as feedforward or feedback, we present an integrated view of the intracortical connectome as a hierarchical network.
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 2, 2020
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation30
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 21, 2020
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
1

A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex

Shenqin Yao et al.Oct 1, 2021
Abstract Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.
1
Citation5
0
Save
115

Regional, layer, and cell-class specific connectivity of the mouse default mode network

Jennifer Kleponis et al.May 14, 2020
Abstract The evolutionarily conserved default mode network (DMN) is characterized by temporally correlated activity between brain regions during resting states. The DMN has emerged as a selectively vulnerable network in multiple disorders, so understanding its anatomical composition will provide fundamental insight into how its function is impacted by disease. Reproducible rodent analogs of the human DMN offer an opportunity to investigate the underlying brain regions and structural connectivity (SC) with high spatial and cell type resolution. Here, we performed systematic analyses using mouse resting state functional magnetic resonance imaging to identify the DMN and whole brain axonal tracing data, co-registered to the 3D Allen Mouse Common Coordinate Framework reference atlas. We identified the specific, predominantly cortical, brain regions comprising the mouse DMN and report preferential SC between these regions. Next, at the cell class level, we report that cortical layer (L) 2/3 neurons in DMN regions project almost exclusively to other DMN regions, whereas L5 neurons project to targets both in and out of the DMN. We then test the hypothesis that in- and out-DMN projection patterns originate from distinct L5 neuron sub-classes using an intersectional viral tracing strategy to label all the axons from neurons defined by a single target. In the ventral retrosplenial cortex, a core DMN region, we found two L5 projection types related to the DMN and mapped them to unique transcriptomically-defined cell types. Together, our results provide a multi-scale description of the anatomical correlates of the mouse DMN.
115
Citation4
0
Save