BO
Benjamin Ouellette
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
3,811
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Diverse Central Projection Patterns of Retinal Ganglion Cells

Emily Martersteck et al.Feb 1, 2017
Highlights•Anatomical characterization of Cre expression in the retina of 88 driver lines•Morphological and histochemical classification of Cre+ RGC types in 26 driver lines•High resolution whole brain imaging of labeled retinal axons reveals central targets•Correspondences described between Cre line and central projection patternsSummaryUnderstanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.Graphical abstract
0

The organization of intracortical connections by layer and cell class in the mouse brain

Julie Harris et al.Apr 1, 2018
Abstract The mammalian cortex is a laminar structure composed of many cell types densely interconnected in complex ways. Recent systematic efforts to map the mouse mesoscale connectome provide comprehensive projection data on interareal connections, but not at the level of specific cell classes or layers within cortical areas. We present here a significant expansion of the Allen Mouse Brain Connectivity Atlas, with ∼1,000 new axonal projection mapping experiments across nearly all isocortical areas in 49 Cre driver lines. Using 13 lines selective for cortical layer-specific projection neuron classes, we identify the differential contribution of each layer/class to the overall intracortical connectivity patterns. We find layer 5 (L5) projection neurons account for essentially all intracortical outputs. L2/3, L4, and L6 neurons contact a subset of the L5 cortical targets. We also describe the most common axon lamination patterns in cortical targets. Most patterns are consistent with previous anatomical rules used to determine hierarchical position between cortical areas (feedforward, feedback), with notable exceptions. While diverse target lamination patterns arise from every source layer/class, L2/3 and L4 neurons are primarily associated with feedforward type projection patterns and L6 with feedback. L5 has both feedforward and feedback projection patterns. Finally, network analyses revealed a modular organization of the intracortical connectome. By labeling interareal and intermodule connections as feedforward or feedback, we present an integrated view of the intracortical connectome as a hierarchical network.
1

A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex

Shenqin Yao et al.Oct 1, 2021
Abstract Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.
1
Citation5
0
Save